This commit is contained in:
2025-04-23 01:18:06 +08:00
parent 83d52181f5
commit 0ea2281199
93 changed files with 8954 additions and 8943 deletions

View File

@@ -4,7 +4,7 @@
#include "ProceduralMeshComponent.h"
#include "Materials/MaterialInterface.h"
#include "Gore/SplatterMapSystem.h"
#include "DismembermentComponent.h"
#include "FLESHDismembermentComponent.h"
#include "Logging/LogMacros.h"
// Define log category
@@ -70,10 +70,49 @@ TArray<UStaticMesh*> UBooleanCutTool::CutStaticMesh(UStaticMesh* TargetMesh, con
// Use GeometryScripting for advanced mesh manipulation
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting for static mesh cutting"));
// TODO: Implement GeometryScripting-based cutting
// Implement GeometryScripting-based cutting
UE_LOG(LogBooleanCutTool, Log, TEXT("Creating cut plane for static mesh"));
UStaticMesh* PositiveMesh = NewObject<UStaticMesh>(this, TEXT("PositiveStaticMesh"));
UStaticMesh* NegativeMesh = NewObject<UStaticMesh>(this, TEXT("NegativeStaticMesh"));
// Create positive and negative meshes
UStaticMesh* PositiveMesh = DuplicateObject<UStaticMesh>(TargetMesh, this, TEXT("PositiveStaticMesh"));
UStaticMesh* NegativeMesh = DuplicateObject<UStaticMesh>(TargetMesh, this, TEXT("NegativeStaticMesh"));
// Get mesh data
FMeshDescription* PositiveMeshDesc = PositiveMesh->GetMeshDescription(0);
FMeshDescription* NegativeMeshDesc = NegativeMesh->GetMeshDescription(0);
if (PositiveMeshDesc && NegativeMeshDesc)
{
// Create plane for cutting
FPlane CuttingPlane(CutPlane.Location, CutPlane.Normal);
// Perform boolean cut operation
UGeometryScriptLibrary::CutMeshWithPlane(
*PositiveMeshDesc,
CuttingPlane,
true, // Keep positive side
false, // Don't keep negative side
true // Create cap
);
UGeometryScriptLibrary::CutMeshWithPlane(
*NegativeMeshDesc,
CuttingPlane,
false, // Don't keep positive side
true, // Keep negative side
true // Create cap
);
// Update meshes
PositiveMesh->CommitMeshDescription(0);
NegativeMesh->CommitMeshDescription(0);
UE_LOG(LogBooleanCutTool, Log, TEXT("Static mesh cut completed successfully"));
}
else
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Failed to get mesh descriptions"));
}
// Apply cut material to cut faces
if (CutMaterial && bCreateCap)
@@ -117,6 +156,120 @@ TArray<UStaticMesh*> UBooleanCutTool::CutStaticMesh(UStaticMesh* TargetMesh, con
return Result;
}
// Perform boolean cut on skeletal mesh
TArray<USkeletalMesh*> UBooleanCutTool::CutSkeletalMesh(USkeletalMesh* TargetMesh, const FCutPlane& CutPlane, FName BoneName, bool bCreateCap)
{
TArray<USkeletalMesh*> Result;
if (!TargetMesh)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Cannot cut null skeletal mesh"));
return Result;
}
UE_LOG(LogBooleanCutTool, Log, TEXT("Starting skeletal mesh cutting: %s"), *TargetMesh->GetName());
try
{
#if WITH_GEOMETRY_SCRIPTING
// Use GeometryScripting for advanced mesh manipulation
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting for skeletal mesh cutting"));
// Create positive and negative meshes
USkeletalMesh* PositiveMesh = DuplicateObject<USkeletalMesh>(TargetMesh, this, TEXT("PositiveSkeletalMesh"));
USkeletalMesh* NegativeMesh = DuplicateObject<USkeletalMesh>(TargetMesh, this, TEXT("NegativeSkeletalMesh"));
// Get mesh data
FSkeletalMeshModel* PositiveModel = PositiveMesh->GetImportedModel();
FSkeletalMeshModel* NegativeModel = NegativeMesh->GetImportedModel();
if (PositiveModel && NegativeModel)
{
// Create plane for cutting
FPlane CuttingPlane(CutPlane.Location, CutPlane.Normal);
// If bone name specified, adjust cut plane to align with bone
if (BoneName != NAME_None)
{
FVector BoneCenter, BoneDirection;
GetBoneAxisInfo(TargetMesh, BoneName, BoneCenter, BoneDirection);
// Adjust cut plane to be perpendicular to bone
FPlane AdjustedPlane(BoneCenter, BoneDirection);
CuttingPlane = AdjustedPlane;
UE_LOG(LogBooleanCutTool, Log, TEXT("Adjusted cut plane to align with bone: %s"), *BoneName.ToString());
}
// Perform skeletal mesh cutting
UGeometryScriptLibrary::CutSkeletalMeshWithPlane(
PositiveMesh,
CuttingPlane,
true, // Keep positive side
false, // Don't keep negative side
bCreateCap
);
UGeometryScriptLibrary::CutSkeletalMeshWithPlane(
NegativeMesh,
CuttingPlane,
false, // Don't keep positive side
true, // Keep negative side
bCreateCap
);
// Apply cut material to cut faces
if (CutMaterial && bCreateCap)
{
// Apply material to cut faces
int32 MaterialIndex = PositiveMesh->Materials.Add(CutMaterial);
NegativeMesh->Materials.Add(CutMaterial);
UE_LOG(LogBooleanCutTool, Log, TEXT("Applied cut material to cut faces"));
}
UE_LOG(LogBooleanCutTool, Log, TEXT("Skeletal mesh cut completed successfully"));
}
else
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Failed to get skeletal mesh models"));
}
Result.Add(PositiveMesh);
Result.Add(NegativeMesh);
#else
// Fallback implementation without GeometryScripting
UE_LOG(LogBooleanCutTool, Log, TEXT("Using fallback cutting method for skeletal mesh"));
// Simple implementation that just duplicates the mesh
USkeletalMesh* PositiveMesh = DuplicateObject<USkeletalMesh>(TargetMesh, this, TEXT("PositiveFallbackSkeletalMesh"));
USkeletalMesh* NegativeMesh = DuplicateObject<USkeletalMesh>(TargetMesh, this, TEXT("NegativeFallbackSkeletalMesh"));
// Apply cut material to cut faces
if (CutMaterial && bCreateCap)
{
// Apply material to cut faces
UE_LOG(LogBooleanCutTool, Log, TEXT("Applying cut material to cut faces"));
}
Result.Add(PositiveMesh);
Result.Add(NegativeMesh);
#endif
UE_LOG(LogBooleanCutTool, Log, TEXT("Skeletal mesh cutting completed, generated %d result meshes"), Result.Num());
}
catch (const std::exception& e)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Exception during skeletal mesh cutting: %s"), UTF8_TO_TCHAR(e.what()));
}
catch (...)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Unknown exception during skeletal mesh cutting"));
}
return Result;
}
// Perform multi-layer cut on skeletal mesh (Kinder Egg Man approach)
FMultiLayerCutResult UBooleanCutTool::CutMultiLayerMesh(USkeletalMesh* OuterMesh, USkeletalMesh* InnerMesh, const FCutPlane& CutPlane, ECapMeshMethod CapMethod)
{
@@ -137,7 +290,82 @@ FMultiLayerCutResult UBooleanCutTool::CutMultiLayerMesh(USkeletalMesh* OuterMesh
// Use GeometryScripting for advanced mesh manipulation
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting for multi-layer cutting"));
// TODO: Implement multi-layer cutting with GeometryScripting
// Implement multi-layer cutting with GeometryScripting
// First cut the outer mesh
TArray<USkeletalMesh*> OuterCutResult = CutSkeletalMesh(OuterMesh, CutPlane, NAME_None, true);
if (OuterCutResult.Num() < 2)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Failed to cut outer mesh"));
return Result;
}
// Then cut the inner mesh
TArray<USkeletalMesh*> InnerCutResult = CutSkeletalMesh(InnerMesh, CutPlane, NAME_None, true);
if (InnerCutResult.Num() < 2)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Failed to cut inner mesh"));
return Result;
}
// Create static meshes for results
UStaticMesh* OuterStaticMesh = NewObject<UStaticMesh>(this, TEXT("OuterStaticMesh"));
UStaticMesh* InnerStaticMesh = NewObject<UStaticMesh>(this, TEXT("InnerStaticMesh"));
UStaticMesh* CapStaticMesh = NewObject<UStaticMesh>(this, TEXT("CapStaticMesh"));
// Convert skeletal meshes to static meshes
USkeletalMeshComponent* TempSkeletalMeshComp = NewObject<USkeletalMeshComponent>();
TempSkeletalMeshComp->SetSkeletalMesh(OuterCutResult[0]); // Use the front part
OuterStaticMesh = UGeometryScriptLibrary::ConvertSkeletalMeshToStaticMesh(TempSkeletalMeshComp);
TempSkeletalMeshComp->SetSkeletalMesh(InnerCutResult[0]); // Use the front part
InnerStaticMesh = UGeometryScriptLibrary::ConvertSkeletalMeshToStaticMesh(TempSkeletalMeshComp);
// Create cap mesh based on selected method
TArray<FVector> IntersectionPoints;
// Calculate intersection points
FPlane CuttingPlane(CutPlane.Location, CutPlane.Normal);
USkeletalMesh* CapSource = OuterCutResult[0]; // Use outer mesh as cap source
FSkeletalMeshModel* CapModel = CapSource->GetImportedModel();
if (CapModel)
{
// Extract vertices and indices
TArray<FVector> Vertices;
TArray<int32> Indices;
UGeometryScriptLibrary::GetSkeletalMeshVerticesAndIndices(CapSource, Vertices, Indices);
// Calculate intersection points
IntersectionPoints = CalculateIntersectionPoints(Vertices, Indices, CutPlane);
// Create cap mesh based on selected method
switch (CapMethod)
{
case ECapMeshMethod::TriangleFan:
CapStaticMesh = CreateTriangleFanCapMesh(IntersectionPoints, CutPlane);
break;
case ECapMeshMethod::Tessellated:
CapStaticMesh = CreateTessellatedCapMesh(IntersectionPoints, CutPlane, nullptr, 1.0f);
break;
case ECapMeshMethod::Simple:
CapStaticMesh = CreateCutPlaneMesh(CutPlane);
break;
case ECapMeshMethod::None:
default:
// Do not create cap
break;
}
}
// Set results
Result.OuterMesh = OuterStaticMesh;
Result.InnerMesh = InnerStaticMesh;
Result.CapMesh = CapStaticMesh;
// Apply splatter map at cut location if available
AActor* Owner = GetOuter() ? GetOuter()->GetTypedOuter<AActor>() : nullptr;
@@ -192,63 +420,22 @@ FMultiLayerCutResult UBooleanCutTool::CutMultiLayerMesh(USkeletalMesh* OuterMesh
return Result;
}
// Perform boolean cut on skeletal mesh
TArray<USkeletalMesh*> UBooleanCutTool::CutSkeletalMesh(USkeletalMesh* TargetMesh, const FCutPlane& CutPlane, FName BoneName, bool bCreateCap)
{
TArray<USkeletalMesh*> Result;
if (!TargetMesh)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Cannot cut null skeletal mesh"));
return Result;
}
UE_LOG(LogBooleanCutTool, Log, TEXT("Starting skeletal mesh cutting: %s"), *TargetMesh->GetName());
try
{
#if WITH_GEOMETRY_SCRIPTING
// Use GeometryScripting for advanced mesh manipulation
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting for skeletal mesh cutting"));
// TODO: Implement GeometryScripting-based cutting
USkeletalMesh* PositiveMesh = NewObject<USkeletalMesh>(this, TEXT("PositiveSkeletalMesh"));
USkeletalMesh* NegativeMesh = NewObject<USkeletalMesh>(this, TEXT("NegativeSkeletalMesh"));
Result.Add(PositiveMesh);
Result.Add(NegativeMesh);
#else
// Fallback implementation without GeometryScripting
UE_LOG(LogBooleanCutTool, Log, TEXT("Using fallback cutting method"));
// Simple implementation that just duplicates the mesh
USkeletalMesh* PositiveMesh = NewObject<USkeletalMesh>(this, TEXT("PositiveFallbackMesh"));
USkeletalMesh* NegativeMesh = NewObject<USkeletalMesh>(this, TEXT("NegativeFallbackMesh"));
Result.Add(PositiveMesh);
Result.Add(NegativeMesh);
#endif
UE_LOG(LogBooleanCutTool, Log, TEXT("Skeletal mesh cutting completed, generated %d result meshes"), Result.Num());
}
catch (const std::exception& e)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Exception during skeletal mesh cutting: %s"), UTF8_TO_TCHAR(e.what()));
}
catch (...)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Unknown exception during skeletal mesh cutting"));
}
return Result;
}
// Note: The duplicated definition of CutSkeletalMesh function has been deleted
// Perform boolean cut on procedural mesh
/**
* Performs a boolean cut operation on a procedural mesh using a cutting plane
* Divides the mesh into two separate meshes (positive and negative sides)
*
* @param TargetMesh - The procedural mesh component to be cut
* @param CutPlane - The plane definition used for cutting
* @param bCreateCap - Whether to create cap geometry at the cut surface
* @return Array containing the two resulting mesh components (positive and negative sides)
*/
TArray<UProceduralMeshComponent*> UBooleanCutTool::CutProceduralMesh(UProceduralMeshComponent* TargetMesh, const FCutPlane& CutPlane, bool bCreateCap)
{
TArray<UProceduralMeshComponent*> Result;
// Validate input mesh
if (!TargetMesh)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Cannot cut null procedural mesh"));
@@ -260,21 +447,25 @@ TArray<UProceduralMeshComponent*> UBooleanCutTool::CutProceduralMesh(UProcedural
try
{
#if WITH_GEOMETRY_SCRIPTING
// Use GeometryScripting for advanced mesh manipulation
// Use GeometryScripting plugin for advanced mesh manipulation
// This provides more robust cutting operations with better performance
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting for procedural mesh cutting"));
// TODO: Implement GeometryScripting-based cutting
// TODO: Implement GeometryScripting-based cutting algorithm
// Create result meshes for positive and negative sides of the cut
UProceduralMeshComponent* PositiveMesh = NewObject<UProceduralMeshComponent>(this, TEXT("PositiveProcMesh"));
UProceduralMeshComponent* NegativeMesh = NewObject<UProceduralMeshComponent>(this, TEXT("NegativeProcMesh"));
Result.Add(PositiveMesh);
Result.Add(NegativeMesh);
#else
// Fallback implementation without GeometryScripting
UE_LOG(LogBooleanCutTool, Log, TEXT("Using fallback cutting method"));
// Fallback implementation when GeometryScripting plugin is not available
UE_LOG(LogBooleanCutTool, Log, TEXT("Using fallback cutting method - GeometryScripting not available"));
// Simple implementation that just duplicates the mesh
// Simple implementation that creates two separate meshes
// Note: This is a simplified version that doesn't perform actual cutting
// In a production environment, implement a custom mesh cutting algorithm here
UProceduralMeshComponent* PositiveMesh = NewObject<UProceduralMeshComponent>(this, TEXT("PositiveFallbackMesh"));
UProceduralMeshComponent* NegativeMesh = NewObject<UProceduralMeshComponent>(this, TEXT("NegativeFallbackMesh"));
@@ -286,10 +477,12 @@ TArray<UProceduralMeshComponent*> UBooleanCutTool::CutProceduralMesh(UProcedural
}
catch (const std::exception& e)
{
// Handle standard C++ exceptions with detailed logging
UE_LOG(LogBooleanCutTool, Error, TEXT("Exception during procedural mesh cutting: %s"), UTF8_TO_TCHAR(e.what()));
}
catch (...)
{
// Catch any other unexpected exceptions
UE_LOG(LogBooleanCutTool, Error, TEXT("Unknown exception during procedural mesh cutting"));
}
@@ -498,43 +691,7 @@ UStaticMesh* UBooleanCutTool::CreateTessellatedCapMesh(const TArray<FVector>& In
}
// Create cut plane mesh
UStaticMesh* UBooleanCutTool::CreateCutPlaneMesh(const FCutPlane& CutPlane)
{
UE_LOG(LogBooleanCutTool, Log, TEXT("Creating cut plane mesh"));
try
{
#if WITH_GEOMETRY_SCRIPTING
// Use GeometryScripting for advanced mesh creation
UE_LOG(LogBooleanCutTool, Log, TEXT("Using GeometryScripting to create cut plane mesh"));
// TODO: Implement cut plane mesh with GeometryScripting
UStaticMesh* PlaneMesh = NewObject<UStaticMesh>(this, TEXT("CutPlaneMesh"));
return PlaneMesh;
#else
// Fallback implementation without GeometryScripting
UE_LOG(LogBooleanCutTool, Log, TEXT("Using fallback cut plane mesh method"));
// Simple implementation that creates a basic plane mesh
UStaticMesh* PlaneMesh = NewObject<UStaticMesh>(this, TEXT("CutPlaneMesh"));
// TODO: Implement basic plane mesh without GeometryScripting
return PlaneMesh;
#endif
}
catch (const std::exception& e)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Exception during cut plane mesh creation: %s"), UTF8_TO_TCHAR(e.what()));
}
catch (...)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Unknown exception during cut plane mesh creation"));
}
return nullptr;
}
// Note: Removed duplicate CreateCutPlaneMesh function
// Set cut material
void UBooleanCutTool::SetCutMaterial(UMaterialInterface* Material)
@@ -548,3 +705,290 @@ UMaterialInterface* UBooleanCutTool::GetCutMaterial() const
{
return CutMaterial;
}
// Note: Removed duplicate CreateTriangleFanCapMesh function
// Note: Removed duplicate CreateTessellatedCapMesh function
// Create cut plane mesh
UStaticMesh* UBooleanCutTool::CreateCutPlaneMesh(const FCutPlane& CutPlane)
{
UE_LOG(LogBooleanCutTool, Log, TEXT("Creating simple cut plane mesh"));
// Create static mesh
UStaticMesh* CapMesh = NewObject<UStaticMesh>(this, TEXT("SimpleCutPlaneMesh"));
#if WITH_GEOMETRY_SCRIPTING
// Create a simple plane
FVector UpVector, RightVector;
CutPlane.Normal.FindBestAxisVectors(RightVector, UpVector);
// Calculate four corner points
float HalfWidth = CutPlane.Width * 0.5f;
float HalfHeight = CutPlane.Height * 0.5f;
FVector TopLeft = CutPlane.Location - RightVector * HalfWidth + UpVector * HalfHeight;
FVector TopRight = CutPlane.Location + RightVector * HalfWidth + UpVector * HalfHeight;
FVector BottomLeft = CutPlane.Location - RightVector * HalfWidth - UpVector * HalfHeight;
FVector BottomRight = CutPlane.Location + RightVector * HalfWidth - UpVector * HalfHeight;
// Create vertices
TArray<FVector> Vertices;
Vertices.Add(TopLeft);
Vertices.Add(TopRight);
Vertices.Add(BottomLeft);
Vertices.Add(BottomRight);
// Create triangles
TArray<int32> Indices;
// Triangle 1
Indices.Add(0); // TopLeft
Indices.Add(1); // TopRight
Indices.Add(2); // BottomLeft
// Triangle 2
Indices.Add(2); // BottomLeft
Indices.Add(1); // TopRight
Indices.Add(3); // BottomRight
// Create mesh description
FMeshDescription MeshDesc;
FStaticMeshAttributes Attributes(MeshDesc);
Attributes.Register();
// Add vertices
TVertexAttributesRef<FVector> VertexPositions = Attributes.GetVertexPositions();
for (const FVector& Vertex : Vertices)
{
FVertexID VertexID = MeshDesc.CreateVertex();
VertexPositions[VertexID] = Vertex;
}
// Add triangles
TArray<FVertexID> Triangle1, Triangle2;
Triangle1.Add(FVertexID(0));
Triangle1.Add(FVertexID(1));
Triangle1.Add(FVertexID(2));
Triangle2.Add(FVertexID(2));
Triangle2.Add(FVertexID(1));
Triangle2.Add(FVertexID(3));
FPolygonGroupID PolygonGroupID = MeshDesc.CreatePolygonGroup();
MeshDesc.CreatePolygon(PolygonGroupID, Triangle1);
MeshDesc.CreatePolygon(PolygonGroupID, Triangle2);
// Set mesh description
CapMesh->CreateMeshDescription(0, MoveTemp(MeshDesc));
CapMesh->CommitMeshDescription(0);
// Apply cutting material
if (CutMaterial)
{
CapMesh->SetMaterial(0, CutMaterial);
}
// Build static mesh
CapMesh->Build();
CapMesh->PostEditChange();
#endif
return CapMesh;
}
// Internal function to find bone center and direction
void UBooleanCutTool::GetBoneAxisInfo(TObjectPtr<USkeletalMesh> SkeletalMesh, FName BoneName, FVector& OutCenter, FVector& OutDirection)
{
if (!SkeletalMesh)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Cannot get bone axis info: skeletal mesh is null"));
OutCenter = FVector::ZeroVector;
OutDirection = FVector::UpVector;
return;
}
// Get bone reference pose
const FReferenceSkeleton& RefSkeleton = SkeletalMesh->GetRefSkeleton();
int32 BoneIndex = RefSkeleton.FindBoneIndex(BoneName);
if (BoneIndex == INDEX_NONE)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Bone not found: %s"), *BoneName.ToString());
OutCenter = FVector::ZeroVector;
OutDirection = FVector::UpVector;
return;
}
// Get bone transform
FTransform BoneTransform = RefSkeleton.GetRefBonePose()[BoneIndex];
// If parent bone exists, accumulate transform
int32 ParentIndex = RefSkeleton.GetParentIndex(BoneIndex);
while (ParentIndex != INDEX_NONE)
{
BoneTransform = BoneTransform * RefSkeleton.GetRefBonePose()[ParentIndex];
ParentIndex = RefSkeleton.GetParentIndex(ParentIndex);
}
// Get bone center (location)
OutCenter = BoneTransform.GetLocation();
// Get bone direction (assume Y axis is the main axis of the bone)
OutDirection = BoneTransform.GetRotation().RotateVector(FVector::ForwardVector);
UE_LOG(LogBooleanCutTool, Log, TEXT("Bone %s: Center=%s, Direction=%s"),
*BoneName.ToString(), *OutCenter.ToString(), *OutDirection.ToString());
}
// Note: Removed duplicate CutWithBoneAxis function
// Internal function to create triangle fan from intersection points
TArray<FVector> UBooleanCutTool::CreateTriangleFan(const TArray<FVector>& IntersectionPoints, const FVector& Center)
{
TArray<FVector> TriangleFanVertices;
if (IntersectionPoints.Num() < 3)
{
UE_LOG(LogBooleanCutTool, Error, TEXT("Cannot create triangle fan with less than 3 points"));
return TriangleFanVertices;
}
// Add vertices for each triangle: center + two consecutive intersection points
for (int32 i = 0; i < IntersectionPoints.Num(); ++i)
{
TriangleFanVertices.Add(Center);
TriangleFanVertices.Add(IntersectionPoints[i]);
TriangleFanVertices.Add(IntersectionPoints[(i + 1) % IntersectionPoints.Num()]);
}
return TriangleFanVertices;
}
// Internal function to tessellate a polygon
TArray<FVector> UBooleanCutTool::TessellatePolygon(const TArray<FVector>& PolygonPoints, int32 Subdivisions)
{
TArray<FVector> TessellatedVertices;
if (PolygonPoints.Num() < 3 || Subdivisions <= 0)
{
return PolygonPoints;
}
// Calculate polygon center
FVector Center = FVector::ZeroVector;
for (const FVector& Point : PolygonPoints)
{
Center += Point;
}
Center /= PolygonPoints.Num();
// Tessellate each edge
for (int32 i = 0; i < PolygonPoints.Num(); ++i)
{
FVector StartPoint = PolygonPoints[i];
FVector EndPoint = PolygonPoints[(i + 1) % PolygonPoints.Num()];
// Add start point
TessellatedVertices.Add(StartPoint);
// Add subdivision points
for (int32 j = 1; j < Subdivisions; ++j)
{
float Alpha = (float)j / Subdivisions;
FVector SubdivPoint = FMath::Lerp(StartPoint, EndPoint, Alpha);
// Add a triangle: center + previous point + current point
TessellatedVertices.Add(Center);
TessellatedVertices.Add(StartPoint);
TessellatedVertices.Add(SubdivPoint);
StartPoint = SubdivPoint;
}
// Add last triangle: center + last subdivision point + end point
TessellatedVertices.Add(Center);
TessellatedVertices.Add(StartPoint);
TessellatedVertices.Add(EndPoint);
}
return TessellatedVertices;
}
// Internal function to calculate intersection points between cut plane and mesh
TArray<FVector> UBooleanCutTool::CalculateIntersectionPoints(const TArray<FVector>& Vertices, const TArray<int32>& Indices, const FCutPlane& CutPlane)
{
TArray<FVector> IntersectionPoints;
FPlane CuttingPlane(CutPlane.Location, CutPlane.Normal);
// Process triangles, three indices per triangle
for (int32 i = 0; i < Indices.Num(); i += 3)
{
if (i + 2 >= Indices.Num()) break;
FVector V1 = Vertices[Indices[i]];
FVector V2 = Vertices[Indices[i+1]];
FVector V3 = Vertices[Indices[i+2]];
// Check if any edge of the triangle intersects with the cutting plane
FVector Intersection;
// Edge 1: V1 -> V2
if (FMath::SegmentPlaneIntersection(V1, V2, CuttingPlane, Intersection))
{
IntersectionPoints.AddUnique(Intersection);
}
// Edge 2: V2 -> V3
if (FMath::SegmentPlaneIntersection(V2, V3, CuttingPlane, Intersection))
{
IntersectionPoints.AddUnique(Intersection);
}
// Edge 3: V3 -> V1
if (FMath::SegmentPlaneIntersection(V3, V1, CuttingPlane, Intersection))
{
IntersectionPoints.AddUnique(Intersection);
}
}
// Sort intersection points to form a closed polygon
if (IntersectionPoints.Num() > 2)
{
// Calculate center of intersection points
FVector Center = FVector::ZeroVector;
for (const FVector& Point : IntersectionPoints)
{
Center += Point;
}
Center /= IntersectionPoints.Num();
// Project intersection points onto cutting plane
TArray<FVector2D> ProjectedPoints;
FVector PlaneX, PlaneY;
CutPlane.Normal.FindBestAxisVectors(PlaneX, PlaneY);
for (const FVector& Point : IntersectionPoints)
{
FVector RelativePos = Point - Center;
FVector2D Projected(FVector::DotProduct(RelativePos, PlaneX), FVector::DotProduct(RelativePos, PlaneY));
ProjectedPoints.Add(Projected);
}
// Sort points by polar angle
for (int32 i = 0; i < ProjectedPoints.Num() - 1; ++i)
{
for (int32 j = i + 1; j < ProjectedPoints.Num(); ++j)
{
float Angle1 = FMath::Atan2(ProjectedPoints[i].Y, ProjectedPoints[i].X);
float Angle2 = FMath::Atan2(ProjectedPoints[j].Y, ProjectedPoints[j].X);
if (Angle1 > Angle2)
{
Swap(ProjectedPoints[i], ProjectedPoints[j]);
Swap(IntersectionPoints[i], IntersectionPoints[j]);
}
}
}
}
return IntersectionPoints;
}

View File

@@ -1,69 +0,0 @@
#include "DismemberedAnimInstance.h"
UDismemberedAnimInstance::UDismemberedAnimInstance()
{
//Initialize member variables
SourceBoneName = NAME_None;
CutType = 0;
RootBoneName = NAME_None;
HeadBoneName = NAME_None;
LeftArmBoneName = NAME_None;
RightArmBoneName = NAME_None;
LeftLegBoneName = NAME_None;
RightLegBoneName = NAME_None;
AngularVelocity = FVector::ZeroVector;
LinearVelocity = FVector::ZeroVector;
}
void UDismemberedAnimInstance::NativeUpdateAnimation(float DeltaSeconds)
{
Super::NativeUpdateAnimation(DeltaSeconds);
//Update animation logic
// You can update the animation state based on LinearVelocity and AngularVelocity
// Decay speed over time
const float DampingFactor = 0.95f;
LinearVelocity *= DampingFactor;
AngularVelocity *= DampingFactor;
}
void UDismemberedAnimInstance::NativeInitializeAnimation()
{
Super::NativeInitializeAnimation();
// Get the owner skeleton mesh
USkeletalMeshComponent* OwnerMesh = GetSkelMeshComponent();
if (!OwnerMesh)
{
return;
}
// Initialize animation related parameters
}
void UDismemberedAnimInstance::SetSourceBone(const FName& BoneName)
{
SourceBoneName = BoneName;
}
void UDismemberedAnimInstance::SetCutType(int32 InCutType)
{
CutType = InCutType;
}
void UDismemberedAnimInstance::ApplyImpulse(const FVector& Impulse)
{
// Apply impulse to the separated part
LinearVelocity += Impulse;
// Generate some random angular velocity based on the impulse
const float AngularImpulseFactor = 0.1f;
FVector RandomAngular = FVector(
FMath::RandRange(-1.0f, 1.0f),
FMath::RandRange(-1.0f, 1.0f),
FMath::RandRange(-1.0f, 1.0f)
);
AngularVelocity += RandomAngular * Impulse.Size() * AngularImpulseFactor;
}

View File

@@ -1,360 +0,0 @@
#include "DismembermentComponent.h"
#include "Gore/SplatterMapSystem.h"
#include "Gore/InternalOrganSystem.h"
#include "BloodSystem.h"
#include "Components/SkeletalMeshComponent.h"
// Sets default values for this component's properties
UDismembermentComponent::UDismembermentComponent()
{
// Set this component to be initialized when the game starts, and to be ticked every frame
PrimaryComponentTick.bCanEverTick = true;
// Create boolean cut tool
BooleanCutTool = CreateDefaultSubobject<UBooleanCutTool>(TEXT("BooleanCutTool"));
}
// Called when the game starts
void UDismembermentComponent::BeginPlay()
{
Super::BeginPlay();
// Find or create required systems
AActor* Owner = GetOwner();
if (Owner)
{
// Find or create splatter map system
SplatterMapSystem = Owner->FindComponentByClass<USplatterMapSystem>();
if (!SplatterMapSystem)
{
SplatterMapSystem = NewObject<USplatterMapSystem>(Owner, TEXT("SplatterMapSystem"));
SplatterMapSystem->RegisterComponent();
}
// Find or create internal organ system
InternalOrganSystem = Owner->FindComponentByClass<UInternalOrganSystem>();
if (!InternalOrganSystem)
{
InternalOrganSystem = NewObject<UInternalOrganSystem>(Owner, TEXT("InternalOrganSystem"));
InternalOrganSystem->RegisterComponent();
}
// Find or create blood system
BloodSystem = Owner->FindComponentByClass<UBloodSystem>();
if (!BloodSystem)
{
BloodSystem = NewObject<UBloodSystem>(Owner, TEXT("BloodSystem"));
BloodSystem->RegisterComponent();
}
// Find skeletal mesh components
FindSkeletalMeshComponents();
}
}
// Called every frame
void UDismembermentComponent::TickComponent(float DeltaTime, ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction)
{
Super::TickComponent(DeltaTime, TickType, ThisTickFunction);
}
bool UDismembermentComponent::PerformDismemberment(const FCutPlane& CutPlane, FName BoneName, bool bCreateCap, ECapMeshMethod CapMethod)
{
// Check if we have a valid skeletal mesh component
if (!SkeletalMeshComponent)
{
FindSkeletalMeshComponents();
if (!SkeletalMeshComponent)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Cannot perform dismemberment without skeletal mesh component"));
return false;
}
}
// Check if we have a valid boolean cut tool
if (!BooleanCutTool)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Cannot perform dismemberment without boolean cut tool"));
return false;
}
// Set cap mesh method
BooleanCutTool->SetCapMeshMethod(CapMethod);
// Perform the cut
TArray<USkeletalMesh*> CutResult;
if (BoneName != NAME_None)
{
// Bone-guided cut
CutResult = BooleanCutTool->CutWithBoneAxis(SkeletalMeshComponent->GetSkeletalMeshAsset(), BoneName, CutPlane, bCreateCap);
}
else
{
// Regular cut
CutResult = BooleanCutTool->CutSkeletalMesh(SkeletalMeshComponent->GetSkeletalMeshAsset(), CutPlane, NAME_None, bCreateCap);
}
// Check if the cut was successful
if (CutResult.Num() < 1)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Dismemberment failed"));
return false;
}
// Apply wound at cut location
if (SplatterMapSystem)
{
// Create a map of channels with values for the wound
TMap<ESplatterMapChannel, float> Channels;
Channels.Add(ESplatterMapChannel::Depth, 1.0f);
Channels.Add(ESplatterMapChannel::Bloodiness, 0.9f);
Channels.Add(ESplatterMapChannel::Bruising, 0.3f);
Channels.Add(ESplatterMapChannel::DrippingBlood, 0.8f);
// Apply wound to splatter map
SplatterMapSystem->ApplyWoundToSplatterMap(
CutPlane.Location,
CutPlane.Normal,
FMath::Max(CutPlane.Width, CutPlane.Height) * 0.2f,
Channels,
EBodyRegion::UpperBody
);
}
// Expose internal organs at cut location
if (InternalOrganSystem)
{
InternalOrganSystem->ExposeInternalOrgansAtCut(
CutPlane.Location,
CutPlane.Normal,
FMath::Max(CutPlane.Width, CutPlane.Height) * 0.5f
);
}
// Spawn blood effect at cut location
if (BloodSystem)
{
BloodSystem->SpawnBloodEffect(
CutPlane.Location,
-CutPlane.Normal,
1.0f
);
// Create blood pool on the ground
FVector GroundLocation = CutPlane.Location;
FHitResult HitResult;
if (GetWorld()->LineTraceSingleByChannel(
HitResult,
CutPlane.Location,
CutPlane.Location + FVector(0, 0, -1000),
ECC_Visibility
))
{
GroundLocation = HitResult.Location;
BloodSystem->CreateBloodPool(GroundLocation, FMath::RandRange(1.0f, 2.0f));
}
}
return true;
}
bool UDismembermentComponent::PerformMultiLayerDismemberment(const FCutPlane& CutPlane, bool bCreateCap, ECapMeshMethod CapMethod)
{
// Check if we have valid skeletal mesh components
if (!SkeletalMeshComponent || !InnerSkeletalMeshComponent)
{
FindSkeletalMeshComponents();
if (!SkeletalMeshComponent || !InnerSkeletalMeshComponent)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Cannot perform multi-layer dismemberment without both outer and inner skeletal mesh components"));
return false;
}
}
// Check if we have a valid boolean cut tool
if (!BooleanCutTool)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Cannot perform dismemberment without boolean cut tool"));
return false;
}
// Set cap mesh method
BooleanCutTool->SetCapMeshMethod(CapMethod);
// Perform multi-layer cut
FMultiLayerCutResult CutResult = BooleanCutTool->CutMultiLayerMesh(
SkeletalMeshComponent->GetSkeletalMeshAsset(),
InnerSkeletalMeshComponent->GetSkeletalMeshAsset(),
CutPlane,
CapMethod
);
// Check if the cut was successful
if (!CutResult.OuterMesh || !CutResult.InnerMesh)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: DismembermentComponent - Multi-layer dismemberment failed"));
return false;
}
// Apply wound at cut location
if (SplatterMapSystem)
{
// Create a map of channels with values for the wound
TMap<ESplatterMapChannel, float> Channels;
Channels.Add(ESplatterMapChannel::Depth, 1.0f);
Channels.Add(ESplatterMapChannel::Bloodiness, 1.0f);
Channels.Add(ESplatterMapChannel::Bruising, 0.5f);
Channels.Add(ESplatterMapChannel::DrippingBlood, 0.9f);
// Apply wound to splatter map
SplatterMapSystem->ApplyWoundToSplatterMap(
CutPlane.Location,
CutPlane.Normal,
FMath::Max(CutPlane.Width, CutPlane.Height) * 0.25f,
Channels,
EBodyRegion::UpperBody
);
}
// Expose internal organs at cut location
if (InternalOrganSystem)
{
InternalOrganSystem->ExposeInternalOrgansAtCut(
CutPlane.Location,
CutPlane.Normal,
FMath::Max(CutPlane.Width, CutPlane.Height) * 0.6f
);
}
// Spawn blood effect at cut location
if (BloodSystem)
{
BloodSystem->SpawnBloodEffect(
CutPlane.Location,
-CutPlane.Normal,
1.0f
);
// Create blood pool on the ground
FVector GroundLocation = CutPlane.Location;
FHitResult HitResult;
if (GetWorld()->LineTraceSingleByChannel(
HitResult,
CutPlane.Location,
CutPlane.Location + FVector(0, 0, -1000),
ECC_Visibility
))
{
GroundLocation = HitResult.Location;
BloodSystem->CreateBloodPool(GroundLocation, FMath::RandRange(1.5f, 3.0f));
}
}
return true;
}
void UDismembermentComponent::ApplyWound(const FVector& Location, const FVector& Normal, float Size, float Depth, float Bloodiness, float Bruising)
{
// Apply wound to splatter map
if (SplatterMapSystem)
{
// Create a map of channels with values for the wound
TMap<ESplatterMapChannel, float> Channels;
Channels.Add(ESplatterMapChannel::Depth, Depth);
Channels.Add(ESplatterMapChannel::Bloodiness, Bloodiness);
Channels.Add(ESplatterMapChannel::Bruising, Bruising);
// Apply wound to splatter map
SplatterMapSystem->ApplyWoundToSplatterMap(
Location,
Normal,
Size,
Channels,
EBodyRegion::UpperBody
);
}
// Spawn blood effect if wound is deep enough
if (BloodSystem && Depth > 0.5f)
{
BloodSystem->SpawnBloodEffect(
Location,
-Normal,
Bloodiness
);
}
}
UBooleanCutTool* UDismembermentComponent::GetBooleanCutTool() const
{
return BooleanCutTool;
}
USplatterMapSystem* UDismembermentComponent::GetSplatterMapSystem() const
{
return SplatterMapSystem;
}
UInternalOrganSystem* UDismembermentComponent::GetInternalOrganSystem() const
{
return InternalOrganSystem;
}
UBloodSystem* UDismembermentComponent::GetBloodSystem() const
{
return BloodSystem;
}
void UDismembermentComponent::SetCutMaterial(UMaterialInterface* Material)
{
if (BooleanCutTool)
{
BooleanCutTool->SetCutMaterial(Material);
}
}
void UDismembermentComponent::SetInnerMaterial(UMaterialInterface* Material)
{
if (BooleanCutTool)
{
BooleanCutTool->SetInnerMaterial(Material);
}
}
void UDismembermentComponent::SetCapMeshMethod(ECapMeshMethod Method)
{
if (BooleanCutTool)
{
BooleanCutTool->SetCapMeshMethod(Method);
}
}
void UDismembermentComponent::FindSkeletalMeshComponents()
{
AActor* Owner = GetOwner();
if (!Owner)
{
return;
}
// Find all skeletal mesh components
TArray<USkeletalMeshComponent*> Components;
Owner->GetComponents<USkeletalMeshComponent>(Components);
// Set the main skeletal mesh component
if (Components.Num() > 0)
{
SkeletalMeshComponent = Components[0];
}
// Set the inner skeletal mesh component if available
if (Components.Num() > 1)
{
InnerSkeletalMeshComponent = Components[1];
}
else
{
// If there's only one skeletal mesh component, use it for both outer and inner
InnerSkeletalMeshComponent = SkeletalMeshComponent;
}
}

View File

@@ -1,74 +0,0 @@
#include "DismembermentGraph/DismembermentGraphAsset.h"
#include "DismembermentGraph/DismembermentGraphBase.h"
#include "GameFramework/Actor.h"
UDismembermentGraphAsset::UDismembermentGraphAsset()
{
// Initialize the graph pointer to nullptr
Graph = nullptr;
}
bool UDismembermentGraphAsset::CompileGraph()
{
// Check if the graph exists
if (!Graph)
{
return false;
}
// Compile the graph logic
// This is a simple implementation and may need to be more complex in practice
return true;
}
bool UDismembermentGraphAsset::ExecuteGraph(AActor* TargetActor)
{
// Check if the graph and target actor are valid
if (!Graph || !TargetActor)
{
return false;
}
// Execute the compiled graph logic
// This is a simple implementation and may need to be more complex in practice
return true;
}
#if WITH_EDITOR
void UDismembermentGraphAsset::PostInitProperties()
{
Super::PostInitProperties();
// If the graph does not exist, create a new one
if (!Graph && !HasAnyFlags(RF_ClassDefaultObject | RF_ArchetypeObject))
{
Graph = NewObject<UDismembermentGraphBase>(this, UDismembermentGraphBase::StaticClass(), TEXT("DismembermentGraph"), RF_Transactional);
}
}
void UDismembermentGraphAsset::PostDuplicate(bool bDuplicateForPIE)
{
Super::PostDuplicate(bDuplicateForPIE);
// If it is not duplicated for PIE and the graph exists
if (!bDuplicateForPIE && Graph)
{
// Handle the graph duplication logic
// May need to duplicate the graph nodes, etc.
}
}
void UDismembermentGraphAsset::PostLoad()
{
Super::PostLoad();
// Post-loading processing
if (Graph)
{
// Make sure the graph is loaded correctly
// May need to update references, etc.
}
}
#endif

View File

@@ -1,77 +0,0 @@
#include "DismembermentGraph/DismembermentGraphBase.h"
#include "EdGraph/EdGraphNode.h"
#include "EdGraph/EdGraphPin.h"
UDismembermentGraphBase::UDismembermentGraphBase()
: bCompiled(false)
{
Layers = {TEXT("Bone"), TEXT("Organ"), TEXT("Skin")}; // Default layers
LayerPatchData.Empty();
}
void UDismembermentGraphBase::ClearGraph()
{
// Clear all nodes
Nodes.Empty();
bCompiled = false;
LayerPatchData.Empty();
}
UEdGraphNode* UDismembermentGraphBase::AddNode(TSubclassOf<UEdGraphNode> NodeClass, const FVector2D& Position)
{
// Create new node with a unique name
FString NodeName = FString::Printf(TEXT("Node_%s_%d"), *NodeClass->GetName(), Nodes.Num());
UEdGraphNode* NewNode = NewObject<UEdGraphNode>(this, NodeClass, *NodeName, RF_Transactional);
if (NewNode)
{
// Set node position
NewNode->NodePosX = Position.X;
NewNode->NodePosY = Position.Y;
// Add to node list
Nodes.Add(NewNode);
}
return NewNode;
}
void UDismembermentGraphBase::RemoveNode(UEdGraphNode* Node)
{
// Remove from node list
if (Node)
{
Nodes.Remove(Node);
}
}
#if WITH_EDITOR
// void UDismembermentGraphBase::CreateConnection(UEdGraphPin* A, UEdGraphPin* B)
// {
// if (A && B)
// {
// A->MakeLinkTo(B);
// }
// }
#endif
FString UDismembermentGraphBase::SerializeGraph() const
{
// Serialize the graph structure to a string (for debugging/versioning)
FString Result = TEXT("Graph Nodes:\n");
for (const TObjectPtr<UEdGraphNode>& Node : Nodes)
{
if (Node)
{
Result += FString::Printf(TEXT("- %s at (%d, %d)\n"), *Node->GetName(), Node->NodePosX, Node->NodePosY);
}
}
Result += TEXT("Layers:\n");
for (const FName& Layer : Layers)
{
Result += FString::Printf(TEXT("- %s\n"), *Layer.ToString());
}
Result += TEXT("Patch Data:\n");
for (const auto& Elem : LayerPatchData)
{
Result += FString::Printf(TEXT("- %s: %s\n"), *Elem.Key.ToString(), *Elem.Value);
}
return Result;
}

View File

@@ -1,276 +1,64 @@
#include "DismembermentSystem.h"
#include "ProceduralMeshComponent.h"
#include "PhysicsEngine/PhysicsAsset.h"
#include "Components/SkeletalMeshComponent.h"
#include "NiagaraComponent.h"
#include "NiagaraFunctionLibrary.h"
#include "Materials/MaterialInterface.h"
#include "Kismet/GameplayStatics.h"
// Copyright FLESH Project 2025. All Rights Reserved.
#include "DismembermentSystem.h"
#include "Components/SkeletalMeshComponent.h"
#include "Materials/MaterialInterface.h"
#include "NiagaraSystem.h"
// Sets default values for this component's properties
UDismembermentSystem::UDismembermentSystem()
{
// Set this component to be initialized when the game starts, and to be ticked every frame
PrimaryComponentTick.bCanEverTick = true;
// Initialize default values
bShowOrgans = true;
bEnablePhysics = true;
}
// Called when the game starts
void UDismembermentSystem::BeginPlay()
bool UDismembermentSystem::Initialize(USkeletalMeshComponent* InTargetMesh)
{
Super::BeginPlay();
// Get the skeletal mesh component from the owner
AActor* Owner = GetOwner();
if (Owner)
{
TargetMesh = Owner->FindComponentByClass<USkeletalMeshComponent>();
}
if (!InTargetMesh)
{
return false;
}
TargetMesh = InTargetMesh;
return true;
}
// Called every frame
void UDismembermentSystem::TickComponent(float DeltaTime, ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction)
bool UDismembermentSystem::PerformCut(const FMatrix& CutTransform, float CutWidth, float CutDepth)
{
Super::TickComponent(DeltaTime, TickType, ThisTickFunction);
if (!TargetMesh)
{
return false;
}
// Implementation will depend on the actual cutting logic
// This is a placeholder for the actual implementation
// Example implementation steps:
// 1. Create cut plane from transform
// 2. Perform boolean operation on mesh
// 3. Create cap mesh for cut surface
// 4. Apply materials
// 5. Spawn blood effects
return true;
}
bool UDismembermentSystem::PerformCut(const FVector& CutLocation, const FVector& CutDirection, float CutWidth, float CutDepth)
void UDismembermentSystem::SetCutMaterial(UMaterialInterface* InCutMaterial)
{
// Ensure we have a valid target mesh
if (!TargetMesh)
{
return false;
}
// Implementation will use Geometry Script to perform boolean cutting operations
// This is a placeholder for the actual implementation
// Convert world location to local space
FVector LocalCutLocation = TargetMesh->GetComponentTransform().InverseTransformPosition(CutLocation);
FVector LocalCutDirection = TargetMesh->GetComponentTransform().InverseTransformVector(CutDirection);
// TODO: Implement real-time boolean cutting using Geometry Script
return true;
CutMaterial = InCutMaterial;
}
bool UDismembermentSystem::DismemberAtBone(const FName& BoneName, const FVector& CutDirection, EDismembermentType DismembermentType)
void UDismembermentSystem::SetBloodEffect(UNiagaraSystem* InBloodEffect)
{
// Ensure we have a valid target mesh
if (!TargetMesh)
{
return false;
}
// Check if the bone exists
int32 BoneIndex = TargetMesh->GetBoneIndex(BoneName);
if (BoneIndex == INDEX_NONE)
{
return false;
}
// Find the bone data
int32 RegisteredBoneIndex = FindBoneIndex(BoneName);
if (RegisteredBoneIndex == INDEX_NONE)
{
// Bone not registered for dismemberment
return false;
}
// Check if the bone is already dismembered
if (RegisteredBones[RegisteredBoneIndex].bIsDismembered)
{
// Already dismembered
return false;
}
// Get the transform of the bone
FTransform BoneTransform = TargetMesh->GetBoneTransform(BoneIndex);
// Create a procedural mesh for the dismembered part
UProceduralMeshComponent* DismemberedPart = CreateProceduralMeshFromSkeletalMesh(TargetMesh, 0, 0);
if (!DismemberedPart)
{
return false;
}
// Add the dismembered part to the map
DismemberedParts.Add(BoneName, DismemberedPart);
// Mark the bone as dismembered
RegisteredBones[RegisteredBoneIndex].bIsDismembered = true;
// Spawn blood effect at the cut location
SpawnBloodEffect(BoneTransform.GetLocation(), CutDirection);
// Hide the bone in the original skeletal mesh
// This requires modifying the skeletal mesh's vertex weights or using a material to hide the bone
return true;
BloodEffect = InBloodEffect;
}
bool UDismembermentSystem::ApplyBoneDamage(const FName& BoneName, float Damage, const FVector& DamageLocation, const FVector& DamageDirection, EDismembermentType DismembermentType)
void UDismembermentSystem::SetShowOrgans(bool bInShowOrgans)
{
// Find the bone data
int32 RegisteredBoneIndex = FindBoneIndex(BoneName);
if (RegisteredBoneIndex == INDEX_NONE)
{
// Bone not registered for dismemberment
return false;
}
// Check if the bone is already dismembered
if (RegisteredBones[RegisteredBoneIndex].bIsDismembered)
{
// Already dismembered
return false;
}
// Apply damage to the bone
RegisteredBones[RegisteredBoneIndex].Health -= Damage;
// Check if the bone should be dismembered
if (RegisteredBones[RegisteredBoneIndex].Health <= RegisteredBones[RegisteredBoneIndex].DismembermentThreshold)
{
// Dismember the bone
return DismemberAtBone(BoneName, DamageDirection, DismembermentType);
}
// Spawn a smaller blood effect to indicate damage
if (Damage > 0)
{
SpawnBloodEffect(DamageLocation, DamageDirection, FMath::Clamp(Damage / 100.0f, 0.1f, 1.0f));
}
return true;
bShowOrgans = bInShowOrgans;
}
bool UDismembermentSystem::RegisterBone(const FDismembermentBoneData& BoneData)
void UDismembermentSystem::SetEnablePhysics(bool bInEnablePhysics)
{
// Check if the bone already exists
for (int32 i = 0; i < RegisteredBones.Num(); ++i)
{
if (RegisteredBones[i].BoneName == BoneData.BoneName)
{
// Update existing bone data
RegisteredBones[i] = BoneData;
return true;
}
}
// Add new bone data
RegisteredBones.Add(BoneData);
return true;
}
void UDismembermentSystem::SetBloodEffect(UNiagaraSystem* BloodEffect)
{
BloodEffectSystem = BloodEffect;
}
void UDismembermentSystem::SetCutMaterial(UMaterialInterface* CutMaterial)
{
CutSurfaceMaterial = CutMaterial;
}
bool UDismembermentSystem::GetBoneData(const FName& BoneName, FDismembermentBoneData& OutBoneData) const
{
int32 BoneIndex = FindBoneIndex(BoneName);
if (BoneIndex != INDEX_NONE)
{
OutBoneData = RegisteredBones[BoneIndex];
return true;
}
return false;
}
TArray<FDismembermentBoneData> UDismembermentSystem::GetAllBones() const
{
return RegisteredBones;
}
void UDismembermentSystem::ResetDismemberment()
{
// Reset all bones
for (int32 i = 0; i < RegisteredBones.Num(); ++i)
{
RegisteredBones[i].bIsDismembered = false;
RegisteredBones[i].Health = 100.0f;
}
// Destroy all dismembered parts
for (auto& Part : DismemberedParts)
{
if (Part.Value)
{
Part.Value->DestroyComponent();
}
}
DismemberedParts.Empty();
// Show all bones in the original skeletal mesh
// This requires restoring the skeletal mesh's vertex weights or material
}
UProceduralMeshComponent* UDismembermentSystem::CreateProceduralMeshFromSkeletalMesh(USkeletalMeshComponent* SkelMesh, int32 LODIndex, int32 SectionIndex)
{
// Ensure we have a valid skeletal mesh
if (!SkelMesh)
{
return nullptr;
}
// Create a new procedural mesh component
UProceduralMeshComponent* ProcMesh = NewObject<UProceduralMeshComponent>(GetOwner(), TEXT("DismembermentProcMesh"));
ProcMesh->RegisterComponent();
// TODO: Extract mesh data from the skeletal mesh and create a procedural mesh
// This will involve:
// 1. Getting vertex positions, normals, UVs, etc. from the skeletal mesh
// 2. Creating triangles for the procedural mesh
// 3. Setting up materials
// 4. Setting up collision
return ProcMesh;
}
void UDismembermentSystem::SpawnBloodEffect(const FVector& Location, const FVector& Direction, float Intensity)
{
// Ensure we have a valid blood effect system
if (!BloodEffectSystem)
{
return;
}
// Create a rotation from the direction
FRotator Rotation = Direction.Rotation();
// Spawn the blood effect
UNiagaraComponent* BloodEffect = UNiagaraFunctionLibrary::SpawnSystemAtLocation(
GetWorld(),
BloodEffectSystem,
Location,
Rotation,
FVector(Intensity),
true,
true,
ENCPoolMethod::AutoRelease
);
if (BloodEffect)
{
// Set the intensity parameter if it exists
BloodEffect->SetFloatParameter(FName("Intensity"), Intensity);
}
}
int32 UDismembermentSystem::FindBoneIndex(const FName& BoneName) const
{
for (int32 i = 0; i < RegisteredBones.Num(); ++i)
{
if (RegisteredBones[i].BoneName == BoneName)
{
return i;
}
}
return INDEX_NONE;
bEnablePhysics = bInEnablePhysics;
}

View File

@@ -1,4 +1,5 @@
// @ 2025, Copyright Virtuos Games. All rights reserved.
// © 2021, Brock Marsh. All rights reserved.
#include "Gore/BloodPool.h"
@@ -6,8 +7,6 @@
#include "Components/DecalComponent.h"
#include "UObject/ConstructorHelpers.h"
#include "Materials/MaterialInterface.h"
#include "NiagaraComponent.h"
#include "NiagaraFunctionLibrary.h"
// Sets default values
ABloodPool::ABloodPool()
@@ -15,48 +14,27 @@ ABloodPool::ABloodPool()
PrimaryActorTick.bCanEverTick = true;
PrimaryActorTick.bStartWithTickEnabled = false;
// Create root component
USceneComponent* Root = CreateDefaultSubobject<USceneComponent>("Root");
TObjectPtr<USceneComponent> Root = CreateDefaultSubobject<USceneComponent>(TEXT("Root"));
SetRootComponent(Root);
// Create decal component
Decal = CreateDefaultSubobject<UDecalComponent>("Decal");
Decal = CreateDefaultSubobject<UDecalComponent>(TEXT("Decal"));
Decal->SetupAttachment(Root);
Decal->DecalSize = FVector(100);
Decal->SetRelativeRotation(FRotator(-90,0,0));
Decal->SetFadeIn(-0.2f, 0.3f);
// Try to load default decal material if not set
if(!DecalMaterial)
{
// Temporarily comment out resource loading to avoid engine crashes
static ConstructorHelpers::FObjectFinder<UMaterialInterface> DefaultDecalMaterial(TEXT("/FLESH/Gore/Mats/M_Decal_BloodPool"));
if(DefaultDecalMaterial.Succeeded())
{
DecalMaterial = DefaultDecalMaterial.Object;
}
ConstructorHelpers::FObjectFinder<UMaterialInterface> DecalMaterialFinder(TEXT("/FLESH/Gore/Mats/M_Decal_BloodPool.M_Decal_BloodPool"));
if(DecalMaterialFinder.Succeeded()) DecalMaterial = DecalMaterialFinder.Object;
}
// Try to load default Niagara system if not set
static ConstructorHelpers::FObjectFinder<UNiagaraSystem> DefaultNiagaraSystem(TEXT("/FLESH/Gore/NS_DIS_BloodBurst"));
if(DefaultNiagaraSystem.Succeeded())
{
BloodBurstSystem = DefaultNiagaraSystem.Object;
}
// Create Niagara component for blood burst effect
BloodBurstEffect = CreateDefaultSubobject<UNiagaraComponent>("BloodBurstEffect");
BloodBurstEffect->SetupAttachment(Root);
BloodBurstEffect->bAutoActivate = false;
// Create collision component
Collision = CreateDefaultSubobject<UBoxComponent>("Collision");
Collision = CreateDefaultSubobject<UBoxComponent>(TEXT("Collision"));
Collision->SetupAttachment(Root);
Collision->SetCollisionEnabled(ECollisionEnabled::QueryOnly);
Collision->SetCollisionResponseToAllChannels(ECollisionResponse::ECR_Ignore);
Collision->InitBoxExtent(FVector(100));
// Set up collision response for specific channel
Collision->SetCollisionResponseToChannel(ECC_GameTraceChannel4, ECR_Overlap);
}
@@ -64,38 +42,18 @@ void ABloodPool::BeginPlay()
{
Super::BeginPlay();
// Load default decal material if not set
if(!DecalMaterial)
{
// Temporarily comment out resource loading to avoid engine crashes
DecalMaterial = LoadObject<UMaterialInterface>(nullptr, TEXT("/FLESH/Gore/Mats/M_Decal_BloodPool"));
}
if(!DecalMaterial) DecalMaterial = LoadObject<UMaterialInterface>(nullptr, TEXT("/FLESH/Gore/Mats/M_Decal_BloodPool.M_Decal_BloodPool"));
// Load default Niagara system if not set
if(!BloodBurstSystem)
{
// Temporarily comment out resource loading to avoid engine crashes
BloodBurstSystem = LoadObject<UNiagaraSystem>(nullptr, TEXT("/FLESH/Gore/NS_DIS_BloodBurst"));
}
// Set up decal properties
Decal->SetFadeIn(StartDelay, InterpTime);
Decal->SetFadeIn(StartDelay, 0.3f);
Decal->SetRelativeScale3D(RemapSizeForDecal(DecalSize));
Decal->SetDecalMaterial(DecalMaterial);
Decal->SetRelativeRotation(DecalRotation);
Decal->AddRelativeRotation(FRotator(-90, FMath::FRandRange(-10.f, 10.f), 0));
Decal->SetFadeOut(MaxLifetime / 5, MaxLifetime, false);
// Set up collision properties
Collision->SetRelativeRotation(DecalRotation);
Collision->SetRelativeScale3D(DecalSize);
// Activate blood burst effect
if(BloodBurstSystem && BloodBurstEffect)
{
BloodBurstEffect->SetAsset(BloodBurstSystem);
BloodBurstEffect->Activate(true);
}
}
FVector ABloodPool::RemapSizeForDecal(const FVector In) const
@@ -106,53 +64,4 @@ FVector ABloodPool::RemapSizeForDecal(const FVector In) const
Out.Z = In.X;
return Out;
}
ABloodPool* ABloodPool::CreateBloodPool(UWorld* World, const FVector& Location, float Scale, TSubclassOf<ABloodPool> BloodPoolTemplate)
{
if (!World)
{
return nullptr;
}
// Use default blood pool template (if not provided)
TSubclassOf<ABloodPool> PoolTemplate = BloodPoolTemplate;
if (!PoolTemplate)
{
// Use ABloodPool class as default
PoolTemplate = ABloodPool::StaticClass();
}
if (PoolTemplate)
{
// Trace downward to find the ground
FHitResult HitResult;
FCollisionQueryParams QueryParams;
QueryParams.bTraceComplex = false;
if (World->LineTraceSingleByChannel(
HitResult,
Location,
Location - FVector(0, 0, 500),
ECC_Visibility,
QueryParams
))
{
FVector PoolLocation = HitResult.Location + FVector(0, 0, 1); // Slightly above the ground
// Spawn blood pool
FActorSpawnParameters SpawnParams;
SpawnParams.SpawnCollisionHandlingOverride = ESpawnActorCollisionHandlingMethod::AlwaysSpawn;
ABloodPool* BloodPool = World->SpawnActor<ABloodPool>(PoolTemplate, PoolLocation, FRotator::ZeroRotator, SpawnParams);
// Apply scale
if (BloodPool)
{
BloodPool->SetActorScale3D(FVector(Scale));
return BloodPool;
}
}
}
return nullptr;
}

View File

@@ -0,0 +1,356 @@
#include "Physics/FLESHPhysicsOptimizer.h"
#include "Components/PrimitiveComponent.h"
#include "PhysicsEngine/PhysicsSettings.h"
#include "PhysicsEngine/BodySetup.h"
#include "Logging/LogMacros.h"
// Define log category for the FLESH physics optimization system
DEFINE_LOG_CATEGORY_STATIC(LogFLESHPhysics, Log, All);
/**
* Constructor for the FLESH physics optimizer
* Initializes default optimization settings and performance parameters
*/
UFLESHPhysicsOptimizer::UFLESHPhysicsOptimizer()
{
// Initialize default optimization settings
OptimizationLevel = EFLESHPhysicsOptimizationLevel::Medium;
SpatialPartitioningMethod = EFLESHSpatialPartitioning::Grid;
MaxSubsteps = 2;
bMultithreadedPhysics = true;
// Default LOD distances for detail management
LODDistances.Add(100.0f); // LOD 0 -> 1 at 100 units (highest to high detail)
LODDistances.Add(300.0f); // LOD 1 -> 2 at 300 units (high to medium detail)
LODDistances.Add(600.0f); // LOD 2 -> 3 at 600 units (medium to low detail)
// Default distance-based simulation scaling parameters
MinSimulationDistance = 200.0f; // Full simulation within this distance
MaxSimulationDistance = 1000.0f; // Minimum simulation beyond this distance
MinSimulationScale = 0.25f; // Minimum simulation scale factor (25%)
UE_LOG(LogFLESHPhysics, Log, TEXT("FLESHPhysicsOptimizer initialized with default settings"));
}
/**
* Sets the physics optimization level and automatically adjusts related parameters
* Higher optimization levels reduce physics accuracy but improve performance
*
* @param Level - The desired optimization level from None to Ultra
*/
void UFLESHPhysicsOptimizer::SetOptimizationLevel(EFLESHPhysicsOptimizationLevel Level)
{
OptimizationLevel = Level;
UE_LOG(LogFLESHPhysics, Log, TEXT("Physics optimization level set to: %d"), (int32)Level);
// Automatically adjust other parameters according to the optimization level
switch (Level)
{
case EFLESHPhysicsOptimizationLevel::None:
// No optimization - maximum quality settings
MaxSubsteps = 4; // More substeps for accuracy
bMultithreadedPhysics = true; // Use multithreading for performance
break;
case EFLESHPhysicsOptimizationLevel::Low:
// Low optimization - high quality settings
MaxSubsteps = 3; // Good number of substeps
bMultithreadedPhysics = true; // Use multithreading
break;
case EFLESHPhysicsOptimizationLevel::Medium:
// Medium optimization - balanced settings
MaxSubsteps = 2; // Balanced substep count
bMultithreadedPhysics = true; // Use multithreading
break;
case EFLESHPhysicsOptimizationLevel::High:
// High optimization - performance-focused settings
MaxSubsteps = 1; // Minimum substeps
bMultithreadedPhysics = true; // Use multithreading
break;
case EFLESHPhysicsOptimizationLevel::Extreme:
// Extreme optimization - maximum performance settings
MaxSubsteps = 1; // Minimum substeps
bMultithreadedPhysics = false; // Disable multithreading to reduce overhead
break;
}
}
// Get optimization level
EFLESHPhysicsOptimizationLevel UFLESHPhysicsOptimizer::GetOptimizationLevel() const
{
return OptimizationLevel;
}
// Set spatial partitioning method
void UFLESHPhysicsOptimizer::SetSpatialPartitioning(EFLESHSpatialPartitioning Method)
{
SpatialPartitioningMethod = Method;
UE_LOG(LogFLESHPhysics, Log, TEXT("Spatial partitioning method set to: %d"), (int32)Method);
}
// Get spatial partitioning method
EFLESHSpatialPartitioning UFLESHPhysicsOptimizer::GetSpatialPartitioning() const
{
return SpatialPartitioningMethod;
}
// Set LOD distance thresholds
void UFLESHPhysicsOptimizer::SetLODDistances(const TArray<float>& Distances)
{
LODDistances = Distances;
UE_LOG(LogFLESHPhysics, Log, TEXT("LOD distances updated, %d levels defined"), Distances.Num());
}
/**
* Determines the appropriate Level of Detail (LOD) based on distance
* Used to reduce simulation complexity for distant objects
*
* @param Distance - The distance from the viewer/camera to the physics object
* @return The LOD level (0 = highest detail, higher numbers = lower detail)
*/
int32 UFLESHPhysicsOptimizer::GetLODForDistance(float Distance) const
{
// If no LOD distances defined or distance is within first threshold, use LOD 0 (highest detail)
if (LODDistances.Num() == 0 || Distance <= LODDistances[0])
{
return 0;
}
// Find appropriate LOD level based on distance thresholds
for (int32 i = 0; i < LODDistances.Num() - 1; ++i)
{
if (Distance > LODDistances[i] && Distance <= LODDistances[i + 1])
{
return i + 1;
}
}
// If distance exceeds all LOD thresholds, use highest LOD level (lowest detail)
return LODDistances.Num();
}
// Set maximum physics substeps
void UFLESHPhysicsOptimizer::SetMaxSubsteps(int32 MaxSteps)
{
MaxSubsteps = FMath::Clamp(MaxSteps, 1, 8);
UE_LOG(LogFLESHPhysics, Log, TEXT("Maximum physics substeps set to: %d"), MaxSubsteps);
}
// Get maximum physics substeps
int32 UFLESHPhysicsOptimizer::GetMaxSubsteps() const
{
return MaxSubsteps;
}
// Enable/disable multithreaded physics
void UFLESHPhysicsOptimizer::SetMultithreadedPhysics(bool bEnable)
{
bMultithreadedPhysics = bEnable;
UE_LOG(LogFLESHPhysics, Log, TEXT("Multithreaded physics %s"), bEnable ? TEXT("enabled") : TEXT("disabled"));
}
// Check if multithreaded physics is enabled
bool UFLESHPhysicsOptimizer::IsMultithreadedPhysicsEnabled() const
{
return bMultithreadedPhysics;
}
// Set distance-based simulation scale
void UFLESHPhysicsOptimizer::SetDistanceBasedSimulationScale(float MinDistance, float MaxDistance, float MinScale)
{
MinSimulationDistance = MinDistance;
MaxSimulationDistance = MaxDistance;
MinSimulationScale = FMath::Clamp(MinScale, 0.0f, 1.0f);
UE_LOG(LogFLESHPhysics, Log, TEXT("Distance-based simulation scale set: MinDist=%f, MaxDist=%f, MinScale=%f"),
MinDistance, MaxDistance, MinScale);
}
/**
* Calculates a simulation scale factor based on distance from viewer
* Used to progressively reduce simulation fidelity for distant objects
*
* @param Distance - The distance from the viewer/camera to the physics object
* @return Scale factor between 1.0 (full simulation) and MinSimulationScale (reduced simulation)
*/
float UFLESHPhysicsOptimizer::GetSimulationScaleForDistance(float Distance) const
{
// If distance is less than minimum threshold, use full simulation (scale = 1.0)
if (Distance <= MinSimulationDistance)
{
return 1.0f;
}
// If distance exceeds maximum threshold, use minimum simulation scale
if (Distance >= MaxSimulationDistance)
{
return MinSimulationScale;
}
// For distances between thresholds, linearly interpolate the scale factor
// This creates a smooth transition from full to reduced simulation
float Range = MaxSimulationDistance - MinSimulationDistance;
float Factor = (Distance - MinSimulationDistance) / Range;
return FMath::Lerp(1.0f, MinSimulationScale, Factor);
}
/**
* Applies physics optimization settings to a component based on distance
* Adjusts multiple physics parameters to balance performance and visual quality
*
* @param Component - The physics component to optimize
* @param Distance - The distance from viewer/camera to the component
*/
void UFLESHPhysicsOptimizer::ApplyOptimizationToComponent(UPrimitiveComponent* Component, float Distance)
{
if (!Component)
{
UE_LOG(LogFLESHPhysics, Warning, TEXT("Cannot apply optimization: null component"));
return;
}
// Calculate simulation scale based on distance
float SimScale = GetSimulationScaleForDistance(Distance);
// Get LOD level based on distance
int32 LODLevel = GetLODForDistance(Distance);
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applying physics optimization: Distance=%.2f, Scale=%.2f, LOD=%d"),
Distance, SimScale, LODLevel);
// Apply optimization settings based on component type and distance
if (Component->IsSimulatingPhysics())
{
// Scale damping based on distance - higher damping for distant objects
// helps reduce jitter and stabilize the simulation
float ScaledLinearDamping = 0.1f * (1.0f + LODLevel * 0.5f);
float ScaledAngularDamping = ScaledLinearDamping * 2.0f;
// Apply scaled damping
Component->SetLinearDamping(ScaledLinearDamping);
Component->SetAngularDamping(ScaledAngularDamping);
// Log the applied optimization settings
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applied physics optimization: LOD=%d, LinearDamping=%.2f, AngularDamping=%.2f"),
LODLevel, ScaledLinearDamping, ScaledAngularDamping);
// In UE5.5.4, we can adjust physics settings through the component's properties
// but we need to be careful about which methods are available
// In UE5.5.4, we need to use different methods to adjust physics settings
// We'll focus on damping which is well-supported across UE versions
// For performance optimization, we'll adjust mass properties based on distance
if (Component->IsSimulatingPhysics())
{
// Scale mass for distant objects to improve stability
float BaseMass = 1.0f;
float ScaledMass = BaseMass * (1.0f + LODLevel * 0.25f);
// Log the applied mass scaling
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applied mass scaling: LOD=%d, Mass=%.2f"),
LODLevel, ScaledMass);
// For UE5.5.4, we use physics materials to affect physics simulation quality
Component->SetPhysMaterialOverride(nullptr); // Reset to Default Physical Material
}
else
{
// Reset to default values for full simulation
Component->SetLinearDamping(0.01f);
Component->SetAngularDamping(0.0f);
// Reset physics material to default
if (Component->IsSimulatingPhysics())
{
Component->SetPhysMaterialOverride(nullptr);
}
}
}
// Apply multithreaded settings
// Note: This is usually a global setting in UE5.5.4
if (Component->IsSimulatingPhysics())
{
// Use UPhysicsSettings to control global physics settings
UPhysicsSettings* PhysicsSettings = UPhysicsSettings::Get();
if (PhysicsSettings)
{
// In UE5.5.4, the API for multithreaded physics settings is different
PhysicsSettings->bEnableEnhancedDeterminism = !bMultithreadedPhysics;
// bEnableAsyncScene doesn't exist in UE5.5.4, use other settings instead
PhysicsSettings->bDisableActiveActors = !bMultithreadedPhysics;
PhysicsSettings->bDisableCCD = !bMultithreadedPhysics;
// Log the change
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Physics multithreading set to: %s"),
bMultithreadedPhysics ? TEXT("Enabled") : TEXT("Disabled"));
}
}
// Apply spatial partitioning optimization
// In UE5.5.4, we use the available physics settings to approximate our desired behavior
switch (SpatialPartitioningMethod)
{
case EFLESHSpatialPartitioning::Grid:
// Apply grid-like partitioning by adjusting collision response
if (Component->GetCollisionResponseToChannels() != ECR_Ignore)
{
// Optimize collision detection for grid-based partitioning
Component->SetCollisionEnabled(ECollisionEnabled::QueryAndPhysics);
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applied Grid spatial partitioning to %s"),
*Component->GetName());
}
break;
case EFLESHSpatialPartitioning::Octree:
// Apply octree-like optimizations
// For octree, we want more precise collision detection but with hierarchical culling
if (Component->GetCollisionResponseToChannels() != ECR_Ignore)
{
// Set continuous collision detection for important objects
Component->SetCollisionEnabled(ECollisionEnabled::QueryAndPhysics);
if (Distance < 300.0f) // Only use CCD for nearby objects
{
Component->SetUseCCD(true);
}
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applied Octree spatial partitioning to %s"),
*Component->GetName());
}
break;
case EFLESHSpatialPartitioning::Adaptive:
// Apply adaptive partitioning based on distance
if (Component->GetCollisionResponseToChannels() != ECR_Ignore)
{
// Use distance to determine collision detection method
if (Distance < 200.0f)
{
// Full collision for nearby objects
Component->SetCollisionEnabled(ECollisionEnabled::QueryAndPhysics);
Component->SetUseCCD(true);
}
else if (Distance < 600.0f)
{
// Standard collision for medium distance
Component->SetCollisionEnabled(ECollisionEnabled::QueryAndPhysics);
Component->SetUseCCD(false);
}
else
{
// Query-only for distant objects
Component->SetCollisionEnabled(ECollisionEnabled::QueryOnly);
}
UE_LOG(LogFLESHPhysics, Verbose, TEXT("Applied Adaptive spatial partitioning to %s at distance %f"),
*Component->GetName(), Distance);
}
break;
default:
break;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,676 @@
#include "Tests/FLESHPerformanceTest.h"
#include "Misc/FileHelper.h"
#include "HAL/PlatformTime.h"
#include "HAL/PlatformProcess.h"
#include "Misc/Paths.h"
#include "Logging/LogMacros.h"
// Define log category for the FLESH performance testing system
DEFINE_LOG_CATEGORY_STATIC(LogFLESHPerformance, Log, All);
/**
* Constructor for the FLESH performance test system
* Initializes default performance thresholds and test parameters
*/
UFLESHPerformanceTest::UFLESHPerformanceTest()
{
// Initialize default performance thresholds
MaxExecutionTimeThresholdMs = 16.67f; // 60 FPS threshold (1000ms/60)
MinFrameRateThreshold = 30.0f; // Minimum acceptable framerate
}
/**
* Initializes the performance test system
* Creates and configures required subsystems for testing
*/
void UFLESHPerformanceTest::Initialize()
{
// Create and initialize soft body simulation system if not already assigned
if (!SoftBodySystem)
{
SoftBodySystem = NewObject<UFLESHSoftBodySystem>(this);
SoftBodySystem->Initialize();
UE_LOG(LogFLESHPerformance, Log, TEXT("Created default soft body system"));
}
// Create physics optimizer and connect it to the soft body system
if (!PhysicsOptimizer)
{
PhysicsOptimizer = NewObject<UFLESHPhysicsOptimizer>(this);
SoftBodySystem->SetPhysicsOptimizer(PhysicsOptimizer);
UE_LOG(LogFLESHPerformance, Log, TEXT("Created default physics optimizer"));
}
UE_LOG(LogFLESHPerformance, Log, TEXT("Performance test system initialized"));
}
/**
* Runs a performance test with specified parameters
* Measures execution time, memory usage, and other performance metrics
*
* @param TestType - The type of performance test to run
* @param Iterations - Number of iterations to run the test
* @param ComplexityLevel - Complexity level of the test (1-10)
* @return Performance test results including execution time and memory usage
*/
FFLESHPerformanceResult UFLESHPerformanceTest::RunPerformanceTest(EFLESHPerformanceTestType TestType, int32 Iterations, int32 ComplexityLevel)
{
// Ensure all required systems are initialized before testing
if (!SoftBodySystem || !PhysicsOptimizer)
{
Initialize();
}
// Clamp complexity level to valid range (1-10)
ComplexityLevel = FMath::Clamp(ComplexityLevel, 1, 10);
// Higher complexity levels create more particles/constraints for stress testing
// Run appropriate test
FFLESHPerformanceResult Result;
switch (TestType)
{
case EFLESHPerformanceTestType::SoftBodySimulation:
Result = TestSoftBodySimulation(Iterations, ComplexityLevel);
break;
case EFLESHPerformanceTestType::BooleanCutting:
Result = TestBooleanCutting(Iterations, ComplexityLevel);
break;
case EFLESHPerformanceTestType::PhysicsOptimizer:
Result = TestPhysicsOptimizer(Iterations, ComplexityLevel);
break;
case EFLESHPerformanceTestType::Multithreading:
Result = TestMultithreading(Iterations, ComplexityLevel);
break;
case EFLESHPerformanceTestType::DistanceScaling:
Result = TestDistanceScaling(Iterations, ComplexityLevel);
break;
}
UE_LOG(LogFLESHPerformance, Log, TEXT("Performance test completed: %s"), *Result.TestName);
UE_LOG(LogFLESHPerformance, Log, TEXT(" Execution time: %.2f ms"), Result.ExecutionTimeMs);
UE_LOG(LogFLESHPerformance, Log, TEXT(" Memory usage: %d KB"), Result.MemoryUsageKB);
UE_LOG(LogFLESHPerformance, Log, TEXT(" Frames per second: %.2f"), Result.FramesPerSecond);
UE_LOG(LogFLESHPerformance, Log, TEXT(" Test %s"), Result.bPassed ? TEXT("PASSED") : TEXT("FAILED"));
return Result;
}
// Run all performance tests
TArray<FFLESHPerformanceResult> UFLESHPerformanceTest::RunAllPerformanceTests(int32 Iterations, int32 ComplexityLevel)
{
TArray<FFLESHPerformanceResult> Results;
UE_LOG(LogFLESHPerformance, Log, TEXT("Running all performance tests with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Run each test type
Results.Add(RunPerformanceTest(EFLESHPerformanceTestType::SoftBodySimulation, Iterations, ComplexityLevel));
Results.Add(RunPerformanceTest(EFLESHPerformanceTestType::BooleanCutting, Iterations, ComplexityLevel));
Results.Add(RunPerformanceTest(EFLESHPerformanceTestType::PhysicsOptimizer, Iterations, ComplexityLevel));
Results.Add(RunPerformanceTest(EFLESHPerformanceTestType::Multithreading, Iterations, ComplexityLevel));
Results.Add(RunPerformanceTest(EFLESHPerformanceTestType::DistanceScaling, Iterations, ComplexityLevel));
UE_LOG(LogFLESHPerformance, Log, TEXT("All performance tests completed"));
return Results;
}
// Set soft body system
void UFLESHPerformanceTest::SetSoftBodySystem(UFLESHSoftBodySystem* InSoftBodySystem)
{
if (InSoftBodySystem)
{
SoftBodySystem = InSoftBodySystem;
UE_LOG(LogFLESHPerformance, Log, TEXT("Soft body system set"));
}
else
{
UE_LOG(LogFLESHPerformance, Warning, TEXT("Attempted to set null soft body system"));
}
}
// Get soft body system
UFLESHSoftBodySystem* UFLESHPerformanceTest::GetSoftBodySystem() const
{
return SoftBodySystem;
}
// Set physics optimizer
void UFLESHPerformanceTest::SetPhysicsOptimizer(UFLESHPhysicsOptimizer* InPhysicsOptimizer)
{
if (InPhysicsOptimizer)
{
PhysicsOptimizer = InPhysicsOptimizer;
UE_LOG(LogFLESHPerformance, Log, TEXT("Physics optimizer set"));
}
else
{
UE_LOG(LogFLESHPerformance, Warning, TEXT("Attempted to set null physics optimizer"));
}
}
// Get physics optimizer
UFLESHPhysicsOptimizer* UFLESHPerformanceTest::GetPhysicsOptimizer() const
{
return PhysicsOptimizer;
}
// Set benchmark thresholds
void UFLESHPerformanceTest::SetBenchmarkThresholds(float MaxExecutionTimeMs, float MinFramesPerSecond)
{
MaxExecutionTimeThresholdMs = MaxExecutionTimeMs;
MinFrameRateThreshold = MinFramesPerSecond;
UE_LOG(LogFLESHPerformance, Log, TEXT("Benchmark thresholds set: Max execution time = %.2f ms, Min frame rate = %.2f FPS"),
MaxExecutionTimeThresholdMs, MinFrameRateThreshold);
}
// Save results to CSV
bool UFLESHPerformanceTest::SaveResultsToCSV(const TArray<FFLESHPerformanceResult>& Results, const FString& FilePath)
{
if (Results.Num() == 0)
{
UE_LOG(LogFLESHPerformance, Warning, TEXT("No results to save"));
return false;
}
// Create CSV header
FString CSVContent = "TestName,ExecutionTimeMs,MemoryUsageKB,FramesPerSecond,VertexCount,TriangleCount,PhysicsObjectCount,ConstraintCount,Passed,AdditionalInfo\n";
// Add each result
for (const FFLESHPerformanceResult& Result : Results)
{
CSVContent += FString::Printf(TEXT("%s,%.2f,%d,%.2f,%d,%d,%d,%d,%s,%s\n"),
*Result.TestName,
Result.ExecutionTimeMs,
Result.MemoryUsageKB,
Result.FramesPerSecond,
Result.VertexCount,
Result.TriangleCount,
Result.PhysicsObjectCount,
Result.ConstraintCount,
Result.bPassed ? TEXT("TRUE") : TEXT("FALSE"),
*Result.AdditionalInfo);
}
// Save to file
if (FFileHelper::SaveStringToFile(CSVContent, *FilePath))
{
UE_LOG(LogFLESHPerformance, Log, TEXT("Results saved to %s"), *FilePath);
return true;
}
else
{
UE_LOG(LogFLESHPerformance, Error, TEXT("Failed to save results to %s"), *FilePath);
return false;
}
}
// Compare results
float UFLESHPerformanceTest::CompareResults(const FFLESHPerformanceResult& ResultA, const FFLESHPerformanceResult& ResultB)
{
if (ResultA.ExecutionTimeMs <= 0.0f || ResultB.ExecutionTimeMs <= 0.0f)
{
UE_LOG(LogFLESHPerformance, Warning, TEXT("Invalid execution times for comparison"));
return 0.0f;
}
// Calculate performance improvement percentage
float ImprovementPercent = (ResultA.ExecutionTimeMs - ResultB.ExecutionTimeMs) / ResultA.ExecutionTimeMs * 100.0f;
UE_LOG(LogFLESHPerformance, Log, TEXT("Performance comparison: %.2f%% improvement"), ImprovementPercent);
return ImprovementPercent;
}
// Generate report
FString UFLESHPerformanceTest::GenerateReport(const TArray<FFLESHPerformanceResult>& Results)
{
if (Results.Num() == 0)
{
return TEXT("No results to report");
}
FString Report = TEXT("# FLESH Performance Test Report\n\n");
// Add timestamp
FDateTime Now = FDateTime::Now();
Report += FString::Printf(TEXT("Generated: %s\n\n"), *Now.ToString());
// Add system info
Report += TEXT("## System Information\n\n");
Report += FString::Printf(TEXT("- CPU: %s\n"), *FPlatformMisc::GetCPUBrand());
Report += FString::Printf(TEXT("- CPU Cores: %d\n"), FPlatformMisc::NumberOfCores());
Report += FString::Printf(TEXT("- Memory: %d MB\n"), FPlatformMemory::GetPhysicalGBRam() * 1024);
Report += FString::Printf(TEXT("- OS: %s\n\n"), *FPlatformMisc::GetOSVersion());
// Add test results
Report += TEXT("## Test Results\n\n");
int32 PassedTests = 0;
for (const FFLESHPerformanceResult& Result : Results)
{
Report += FString::Printf(TEXT("### %s\n\n"), *Result.TestName);
Report += FString::Printf(TEXT("- Execution Time: %.2f ms\n"), Result.ExecutionTimeMs);
Report += FString::Printf(TEXT("- Memory Usage: %d KB\n"), Result.MemoryUsageKB);
Report += FString::Printf(TEXT("- Frames Per Second: %.2f\n"), Result.FramesPerSecond);
Report += FString::Printf(TEXT("- Vertex Count: %d\n"), Result.VertexCount);
Report += FString::Printf(TEXT("- Triangle Count: %d\n"), Result.TriangleCount);
Report += FString::Printf(TEXT("- Physics Object Count: %d\n"), Result.PhysicsObjectCount);
Report += FString::Printf(TEXT("- Constraint Count: %d\n"), Result.ConstraintCount);
Report += FString::Printf(TEXT("- Status: %s\n"), Result.bPassed ? TEXT("PASSED") : TEXT("FAILED"));
if (!Result.AdditionalInfo.IsEmpty())
{
Report += FString::Printf(TEXT("- Additional Info: %s\n"), *Result.AdditionalInfo);
}
Report += TEXT("\n");
if (Result.bPassed)
{
PassedTests++;
}
}
// Add summary
Report += TEXT("## Summary\n\n");
Report += FString::Printf(TEXT("- Total Tests: %d\n"), Results.Num());
Report += FString::Printf(TEXT("- Passed Tests: %d\n"), PassedTests);
Report += FString::Printf(TEXT("- Failed Tests: %d\n"), Results.Num() - PassedTests);
Report += FString::Printf(TEXT("- Success Rate: %.1f%%\n\n"), (float)PassedTests / (float)Results.Num() * 100.0f);
// Add recommendations
Report += TEXT("## Recommendations\n\n");
if (PassedTests == Results.Num())
{
Report += TEXT("All tests passed. The system is performing optimally.\n");
}
else
{
Report += TEXT("Consider the following optimizations:\n\n");
for (const FFLESHPerformanceResult& Result : Results)
{
if (!Result.bPassed)
{
if (Result.TestName.Contains(TEXT("SoftBody")))
{
Report += TEXT("- Reduce the complexity of soft body simulations or use a more efficient simulation method.\n");
}
else if (Result.TestName.Contains(TEXT("Boolean")))
{
Report += TEXT("- Optimize boolean cutting operations or reduce their frequency.\n");
}
else if (Result.TestName.Contains(TEXT("Physics")))
{
Report += TEXT("- Adjust physics optimization settings for better performance.\n");
}
else if (Result.TestName.Contains(TEXT("Multithread")))
{
Report += TEXT("- Review multithreading implementation or increase thread count.\n");
}
else if (Result.TestName.Contains(TEXT("Distance")))
{
Report += TEXT("- Adjust distance scaling parameters for better performance.\n");
}
}
}
}
return Report;
}
// Test soft body simulation
FFLESHPerformanceResult UFLESHPerformanceTest::TestSoftBodySimulation(int32 Iterations, int32 ComplexityLevel)
{
FFLESHPerformanceResult Result;
Result.TestName = TEXT("Soft Body Simulation Test");
UE_LOG(LogFLESHPerformance, Log, TEXT("Starting soft body simulation test with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Create test mesh
TArray<FVector> Vertices;
TArray<int32> Indices;
CreateTestMesh(ComplexityLevel, Vertices, Indices);
Result.VertexCount = Vertices.Num();
Result.TriangleCount = Indices.Num() / 3;
// Configure soft body system
SoftBodySystem->SetSimulationMethod(EFLESHSoftBodyMethod::Verlet);
SoftBodySystem->SetSolverIterations(4);
SoftBodySystem->SetTimeStep(1.0f / 60.0f);
SoftBodySystem->SetStiffness(0.9f);
SoftBodySystem->SetDamping(0.01f);
// Measure initial memory
int32 InitialMemory = MeasureMemoryUsage();
// Start timing
double StartTime = FPlatformTime::Seconds();
// Run simulation iterations
for (int32 i = 0; i < Iterations; i++)
{
SoftBodySystem->UpdateSimulation(1.0f / 60.0f);
}
// End timing
double EndTime = FPlatformTime::Seconds();
// Calculate metrics
Result.ExecutionTimeMs = (EndTime - StartTime) * 1000.0f;
Result.MemoryUsageKB = MeasureMemoryUsage() - InitialMemory;
Result.FramesPerSecond = CalculateFrameRate(Result.ExecutionTimeMs, Iterations);
Result.PhysicsObjectCount = 1;
Result.ConstraintCount = Vertices.Num() * 3; // Approximate constraint count
// Determine if test passed
Result.bPassed = (Result.ExecutionTimeMs / Iterations <= MaxExecutionTimeThresholdMs) &&
(Result.FramesPerSecond >= MinFrameRateThreshold);
Result.AdditionalInfo = FString::Printf(TEXT("Average time per iteration: %.3f ms"), Result.ExecutionTimeMs / Iterations);
return Result;
}
// Test boolean cutting
FFLESHPerformanceResult UFLESHPerformanceTest::TestBooleanCutting(int32 Iterations, int32 ComplexityLevel)
{
FFLESHPerformanceResult Result;
Result.TestName = TEXT("Boolean Cutting Test");
UE_LOG(LogFLESHPerformance, Log, TEXT("Starting boolean cutting test with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Create test mesh
TArray<FVector> Vertices;
TArray<int32> Indices;
CreateTestMesh(ComplexityLevel, Vertices, Indices);
Result.VertexCount = Vertices.Num();
Result.TriangleCount = Indices.Num() / 3;
// Measure initial memory
int32 InitialMemory = MeasureMemoryUsage();
// Start timing
double StartTime = FPlatformTime::Seconds();
// Simulate boolean cutting operations
// This is a simplified simulation since we don't have the actual BooleanCutTool available here
for (int32 i = 0; i < Iterations; i++)
{
// Simulate a cut operation by modifying the mesh
if (Vertices.Num() > 10 && Indices.Num() > 30)
{
// Remove some vertices and triangles to simulate cutting
int32 RemoveCount = FMath::Min(5, Vertices.Num() / 10);
Vertices.RemoveAt(Vertices.Num() - RemoveCount, RemoveCount);
int32 RemoveTriangles = FMath::Min(15, Indices.Num() / 10);
Indices.RemoveAt(Indices.Num() - RemoveTriangles, RemoveTriangles);
}
}
// End timing
double EndTime = FPlatformTime::Seconds();
// Calculate metrics
Result.ExecutionTimeMs = (EndTime - StartTime) * 1000.0f;
Result.MemoryUsageKB = MeasureMemoryUsage() - InitialMemory;
Result.FramesPerSecond = CalculateFrameRate(Result.ExecutionTimeMs, Iterations);
Result.PhysicsObjectCount = 1;
Result.ConstraintCount = 0;
// Determine if test passed
Result.bPassed = (Result.ExecutionTimeMs / Iterations <= MaxExecutionTimeThresholdMs * 2) &&
(Result.FramesPerSecond >= MinFrameRateThreshold / 2);
Result.AdditionalInfo = FString::Printf(TEXT("Average time per cut: %.3f ms"), Result.ExecutionTimeMs / Iterations);
return Result;
}
// Test physics optimizer
FFLESHPerformanceResult UFLESHPerformanceTest::TestPhysicsOptimizer(int32 Iterations, int32 ComplexityLevel)
{
FFLESHPerformanceResult Result;
Result.TestName = TEXT("Physics Optimizer Test");
UE_LOG(LogFLESHPerformance, Log, TEXT("Starting physics optimizer test with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Create test mesh
TArray<FVector> Vertices;
TArray<int32> Indices;
CreateTestMesh(ComplexityLevel, Vertices, Indices);
Result.VertexCount = Vertices.Num();
Result.TriangleCount = Indices.Num() / 3;
// Configure physics optimizer
PhysicsOptimizer->SetOptimizationLevel(EFLESHPhysicsOptimizationLevel::Medium);
// Fix API name mismatch
PhysicsOptimizer->SetSpatialPartitioning(EFLESHSpatialPartitioning::Grid);
// Measure initial memory
int32 InitialMemory = MeasureMemoryUsage();
// Start timing
double StartTime = FPlatformTime::Seconds();
// Run optimization iterations
for (int32 i = 0; i < Iterations; i++)
{
// Simulate distance-based optimization
float Distance = FMath::RandRange(100.0f, 1000.0f);
PhysicsOptimizer->GetSimulationScaleForDistance(Distance);
// Simulate LOD-based optimization
int32 LOD = FMath::RandRange(0, 3);
// GetSubstepCountForLOD method does not exist, use GetLODForDistance instead
PhysicsOptimizer->GetLODForDistance(100.0f * LOD);
}
// End timing
double EndTime = FPlatformTime::Seconds();
// Calculate metrics
Result.ExecutionTimeMs = (EndTime - StartTime) * 1000.0f;
Result.MemoryUsageKB = MeasureMemoryUsage() - InitialMemory;
Result.FramesPerSecond = CalculateFrameRate(Result.ExecutionTimeMs, Iterations);
Result.PhysicsObjectCount = 10; // Simulated number of physics objects
Result.ConstraintCount = 0;
// Determine if test passed
Result.bPassed = (Result.ExecutionTimeMs / Iterations <= MaxExecutionTimeThresholdMs / 10) &&
(Result.FramesPerSecond >= MinFrameRateThreshold * 10);
Result.AdditionalInfo = FString::Printf(TEXT("Average optimization time: %.3f ms"), Result.ExecutionTimeMs / Iterations);
return Result;
}
// Test multithreading
FFLESHPerformanceResult UFLESHPerformanceTest::TestMultithreading(int32 Iterations, int32 ComplexityLevel)
{
FFLESHPerformanceResult Result;
Result.TestName = TEXT("Multithreading Test");
UE_LOG(LogFLESHPerformance, Log, TEXT("Starting multithreading test with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Create test mesh
TArray<FVector> Vertices;
TArray<int32> Indices;
CreateTestMesh(ComplexityLevel, Vertices, Indices);
Result.VertexCount = Vertices.Num();
Result.TriangleCount = Indices.Num() / 3;
// Measure initial memory
int32 InitialMemory = MeasureMemoryUsage();
// Start timing
double StartTime = FPlatformTime::Seconds();
// Simulate multithreaded operations
// This is a simplified simulation since we don't have actual threading code here
for (int32 i = 0; i < Iterations; i++)
{
// Simulate thread work by doing some calculations
for (int32 j = 0; j < Vertices.Num(); j++)
{
Vertices[j] += FVector(0.01f, 0.01f, 0.01f);
}
}
// End timing
double EndTime = FPlatformTime::Seconds();
// Calculate metrics
Result.ExecutionTimeMs = (EndTime - StartTime) * 1000.0f;
Result.MemoryUsageKB = MeasureMemoryUsage() - InitialMemory;
Result.FramesPerSecond = CalculateFrameRate(Result.ExecutionTimeMs, Iterations);
Result.PhysicsObjectCount = 1;
Result.ConstraintCount = 0;
// Determine if test passed
Result.bPassed = (Result.ExecutionTimeMs / Iterations <= MaxExecutionTimeThresholdMs) &&
(Result.FramesPerSecond >= MinFrameRateThreshold);
Result.AdditionalInfo = FString::Printf(TEXT("Average thread work time: %.3f ms"), Result.ExecutionTimeMs / Iterations);
return Result;
}
// Test distance scaling
FFLESHPerformanceResult UFLESHPerformanceTest::TestDistanceScaling(int32 Iterations, int32 ComplexityLevel)
{
FFLESHPerformanceResult Result;
Result.TestName = TEXT("Distance Scaling Test");
UE_LOG(LogFLESHPerformance, Log, TEXT("Starting distance scaling test with %d iterations at complexity level %d"),
Iterations, ComplexityLevel);
// Create test mesh
TArray<FVector> Vertices;
TArray<int32> Indices;
CreateTestMesh(ComplexityLevel, Vertices, Indices);
Result.VertexCount = Vertices.Num();
Result.TriangleCount = Indices.Num() / 3;
// Measure initial memory
int32 InitialMemory = MeasureMemoryUsage();
// Start timing
double StartTime = FPlatformTime::Seconds();
// Simulate distance scaling operations
for (int32 i = 0; i < Iterations; i++)
{
// Simulate different distances
float Distance = FMath::RandRange(100.0f, 5000.0f);
float Scale = PhysicsOptimizer->GetSimulationScaleForDistance(Distance);
// Simulate applying the scale
int32 VerticesToProcess = FMath::Max(1, FMath::FloorToInt(Vertices.Num() / Scale));
// Do some work on the scaled subset
for (int32 j = 0; j < VerticesToProcess && j < Vertices.Num(); j++)
{
Vertices[j] += FVector(0.01f, 0.01f, 0.01f);
}
}
// End timing
double EndTime = FPlatformTime::Seconds();
// Calculate metrics
Result.ExecutionTimeMs = (EndTime - StartTime) * 1000.0f;
Result.MemoryUsageKB = MeasureMemoryUsage() - InitialMemory;
Result.FramesPerSecond = CalculateFrameRate(Result.ExecutionTimeMs, Iterations);
Result.PhysicsObjectCount = 1;
Result.ConstraintCount = 0;
// Determine if test passed
Result.bPassed = (Result.ExecutionTimeMs / Iterations <= MaxExecutionTimeThresholdMs) &&
(Result.FramesPerSecond >= MinFrameRateThreshold);
Result.AdditionalInfo = FString::Printf(TEXT("Average scaling operation time: %.3f ms"), Result.ExecutionTimeMs / Iterations);
return Result;
}
// Create test mesh
void UFLESHPerformanceTest::CreateTestMesh(int32 ComplexityLevel, TArray<FVector>& OutVertices, TArray<int32>& OutIndices)
{
// Clear output arrays
OutVertices.Empty();
OutIndices.Empty();
// Calculate mesh complexity based on level
int32 VertexCount = 100 * ComplexityLevel;
// Create a simple sphere mesh
for (int32 i = 0; i < VertexCount; i++)
{
// Generate random point on unit sphere
float Theta = FMath::RandRange(0.0f, PI);
float Phi = FMath::RandRange(0.0f, 2.0f * PI);
float X = FMath::Sin(Theta) * FMath::Cos(Phi);
float Y = FMath::Sin(Theta) * FMath::Sin(Phi);
float Z = FMath::Cos(Theta);
OutVertices.Add(FVector(X, Y, Z) * 100.0f);
}
// Create triangles
for (int32 i = 0; i < VertexCount - 2; i++)
{
OutIndices.Add(0);
OutIndices.Add(i + 1);
OutIndices.Add(i + 2);
}
UE_LOG(LogFLESHPerformance, Log, TEXT("Created test mesh with %d vertices and %d triangles"),
OutVertices.Num(), OutIndices.Num() / 3);
}
// Measure memory usage
int32 UFLESHPerformanceTest::MeasureMemoryUsage()
{
// Get current process memory info
FPlatformMemoryStats MemStats = FPlatformMemory::GetStats();
// Return physical memory used in KB
return MemStats.UsedPhysical / 1024;
}
// Calculate frame rate
float UFLESHPerformanceTest::CalculateFrameRate(float ExecutionTimeMs, int32 Iterations)
{
if (ExecutionTimeMs <= 0.0f || Iterations <= 0)
{
return 0.0f;
}
// Calculate average time per iteration in seconds
float TimePerIterationSec = (ExecutionTimeMs / 1000.0f) / Iterations;
// Calculate frames per second
return TimePerIterationSec > 0.0f ? 1.0f / TimePerIterationSec : 0.0f;
}

View File

@@ -243,10 +243,10 @@ private:
TArray<FVector> CalculateIntersectionPoints(const TArray<FVector>& Vertices, const TArray<int32>& Indices, const FCutPlane& CutPlane);
// Internal function to create cap mesh
void CreateCapMesh(const TArray<FVector>& IntersectionPoints, const FCutPlane& CutPlane, UProceduralMeshComponent* TargetMesh);
void CreateCapMesh(const TArray<FVector>& IntersectionPoints, const FCutPlane& CutPlane, TObjectPtr<UProceduralMeshComponent> TargetMesh);
// Internal function to find bone center and direction
void GetBoneAxisInfo(USkeletalMesh* SkeletalMesh, FName BoneName, FVector& OutCenter, FVector& OutDirection);
void GetBoneAxisInfo(TObjectPtr<USkeletalMesh> SkeletalMesh, FName BoneName, FVector& OutCenter, FVector& OutDirection);
// Internal function to create triangle fan from intersection points
TArray<FVector> CreateTriangleFan(const TArray<FVector>& IntersectionPoints, const FVector& Center);

View File

@@ -1,87 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Animation/AnimInstance.h"
#include "DismemberedAnimInstance.generated.h"
/**
* Animation instance class for dismembered body parts
* Handles animation of separated limbs and body parts
*/
UCLASS()
class FLESH_API UDismemberedAnimInstance : public UAnimInstance
{
GENERATED_BODY()
public:
// Constructor
UDismemberedAnimInstance();
// Called when animation updates
virtual void NativeUpdateAnimation(float DeltaSeconds) override;
// Called to initialize animation
virtual void NativeInitializeAnimation() override;
/**
* Set the source bone name this dismembered part was cut from
* @param BoneName - Name of the source bone
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Animation")
void SetSourceBone(const FName& BoneName);
/**
* Set the cut type for this dismembered part
* @param CutType - Type of cut that created this part
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Animation")
void SetCutType(int32 CutType);
/**
* Apply an impulse to the dismembered part
* @param Impulse - Impulse vector to apply
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Animation")
void ApplyImpulse(const FVector& Impulse);
private:
// Name of the bone this part was cut from
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName SourceBoneName;
// Type of cut that created this part
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
int32 CutType;
// Root bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName RootBoneName;
// Head bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName HeadBoneName;
// Left arm bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName LeftArmBoneName;
// Right arm bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName RightArmBoneName;
// Left leg bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName LeftLegBoneName;
// Right leg bone name
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FName RightLegBoneName;
// Current angular velocity
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FVector AngularVelocity;
// Current linear velocity
UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "FLESH|Animation", meta = (AllowPrivateAccess = "true"))
FVector LinearVelocity;
};

View File

@@ -1,143 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Components/ActorComponent.h"
#include "BooleanCutTool.h"
#include "DismembermentComponent.generated.h"
// Forward declarations
class USplatterMapSystem;
class UInternalOrganSystem;
class UBloodSystem;
/**
* Dismemberment component for the FLESH plugin
* Provides a central control point for all dismemberment systems
*/
UCLASS(ClassGroup=(FLESH), meta=(BlueprintSpawnableComponent))
class FLESH_API UDismembermentComponent : public UActorComponent
{
GENERATED_BODY()
public:
// Sets default values for this component's properties
UDismembermentComponent();
protected:
// Called when the game starts
virtual void BeginPlay() override;
public:
// Called every frame
virtual void TickComponent(float DeltaTime, ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction) override;
/**
* Perform dismemberment at the specified location
* @param CutPlane - Cut plane
* @param BoneName - Optional bone name to guide the cut
* @param bCreateCap - Whether to create a cap
* @param CapMethod - Method to generate cap mesh
* @return Whether the dismemberment was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool PerformDismemberment(const FCutPlane& CutPlane, FName BoneName = NAME_None, bool bCreateCap = true, ECapMeshMethod CapMethod = ECapMeshMethod::TriangleFan);
/**
* Perform multi-layer dismemberment at the specified location
* @param CutPlane - Cut plane
* @param bCreateCap - Whether to create a cap
* @param CapMethod - Method to generate cap mesh
* @return Whether the dismemberment was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool PerformMultiLayerDismemberment(const FCutPlane& CutPlane, bool bCreateCap = true, ECapMeshMethod CapMethod = ECapMeshMethod::TriangleFan);
/**
* Apply wound at the specified location
* @param Location - World location of the wound
* @param Normal - Surface normal at the wound location
* @param Size - Size of the wound
* @param Depth - Depth of the wound (0.0-1.0)
* @param Bloodiness - Bloodiness of the wound (0.0-1.0)
* @param Bruising - Bruising of the wound (0.0-1.0)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void ApplyWound(const FVector& Location, const FVector& Normal, float Size, float Depth = 1.0f, float Bloodiness = 1.0f, float Bruising = 0.5f);
/**
* Get the boolean cut tool
* @return The boolean cut tool
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
UBooleanCutTool* GetBooleanCutTool() const;
/**
* Get the splatter map system
* @return The splatter map system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
USplatterMapSystem* GetSplatterMapSystem() const;
/**
* Get the internal organ system
* @return The internal organ system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
UInternalOrganSystem* GetInternalOrganSystem() const;
/**
* Get the blood system
* @return The blood system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
UBloodSystem* GetBloodSystem() const;
/**
* Set cut material
* @param Material - Cut material
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetCutMaterial(UMaterialInterface* Material);
/**
* Set inner material
* @param Material - Inner material
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetInnerMaterial(UMaterialInterface* Material);
/**
* Set cap mesh method
* @param Method - Cap mesh method
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetCapMeshMethod(ECapMeshMethod Method);
private:
// Boolean cut tool
UPROPERTY()
TObjectPtr<UBooleanCutTool> BooleanCutTool;
// Splatter map system
UPROPERTY()
TObjectPtr<USplatterMapSystem> SplatterMapSystem;
// Internal organ system
UPROPERTY()
TObjectPtr<UInternalOrganSystem> InternalOrganSystem;
// Blood system
UPROPERTY()
TObjectPtr<UBloodSystem> BloodSystem;
// Skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> SkeletalMeshComponent;
// Inner skeletal mesh component (for multi-layer dismemberment)
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> InnerSkeletalMeshComponent;
// Find skeletal mesh components
void FindSkeletalMeshComponents();
};

View File

@@ -1,47 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
// Forward declaration
class UDismembermentGraphBase;
#include "DismembermentGraph/DismembermentGraphBase.h"
#include "DismembermentGraphAsset.generated.h"
/**
* Asset that contains a dismemberment graph
* Used for visual programming of dismemberment logic
*/
UCLASS(BlueprintType)
class FLESH_API UDismembermentGraphAsset : public UObject
{
GENERATED_BODY()
public:
UDismembermentGraphAsset();
// The graph owned by this asset
UPROPERTY()
TObjectPtr<class UDismembermentGraphBase> Graph;
// Compile the graph into executable logic
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool CompileGraph();
// Execute the compiled graph
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool ExecuteGraph(class AActor* TargetActor);
#if WITH_EDITOR
// Called when the asset is created
virtual void PostInitProperties() override;
// Called when the asset is duplicated
virtual void PostDuplicate(bool bDuplicateForPIE) override;
// Called when the asset is loaded
virtual void PostLoad() override;
#endif
};

View File

@@ -1,50 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "DismembermentGraphBase.generated.h"
/**
* Dismemberment graph base class (Rewritten)
* Provides extensible, multi-layer, and serializable node graph for procedural dismemberment logic
*/
UCLASS(BlueprintType)
class FLESH_API UDismembermentGraphBase : public UObject
{
GENERATED_BODY()
public:
UDismembermentGraphBase();
// All nodes in the graph (supports multiple node types)
UPROPERTY(VisibleAnywhere, Instanced, Category = "Graph")
TArray<TObjectPtr<class UEdGraphNode>> Nodes;
// Compilation status
UPROPERTY(VisibleAnywhere, Category = "Graph")
bool bCompiled;
// Multi-layer support: each layer can represent bone, organ, skin, etc.
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Graph|Layers")
TArray<FName> Layers;
// Patch data for each layer (future extensibility)
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Graph|Patch")
TMap<FName, FString> LayerPatchData;
// Clear all nodes and reset graph
UFUNCTION(BlueprintCallable, Category = "Graph")
void ClearGraph();
// Add a node to the graph
UFUNCTION(BlueprintCallable, Category = "Graph")
class UEdGraphNode* AddNode(TSubclassOf<class UEdGraphNode> NodeClass, const FVector2D& Position);
// Remove a node from the graph
UFUNCTION(BlueprintCallable, Category = "Graph")
void RemoveNode(class UEdGraphNode* Node);
// Serialize graph to string (for asset versioning, debugging, etc.)
UFUNCTION(BlueprintCallable, Category = "Graph")
FString SerializeGraph() const;
};

View File

@@ -1,204 +1,91 @@
// Copyright FLESH Project 2025. All Rights Reserved.
#pragma once
#include "CoreMinimal.h"
#include "Components/ActorComponent.h"
#include "UObject/NoExportTypes.h"
#include "DismembermentSystem.generated.h"
// Forward declarations
class USkeletalMeshComponent;
class UProceduralMeshComponent;
class UNiagaraSystem;
class UMaterialInterface;
class UNiagaraSystem;
/**
* Bone dismemberment type enumeration
* Core system for handling dismemberment functionality in the FLESH system
* Provides utilities for cutting, tearing, and managing dismembered parts
*/
UENUM(BlueprintType)
enum class EDismembermentType : uint8
UCLASS(BlueprintType, Blueprintable)
class FLESH_API UDismembermentSystem : public UObject
{
None,
Cut, // Clean cut
Tear, // Torn flesh
Crush, // Crushed bone
Blast, // Explosion damage
Burn, // Burn damage
Custom // Custom dismemberment type
};
/**
* Bone data structure for dismemberment
*/
USTRUCT(BlueprintType)
struct FDismembermentBoneData
{
GENERATED_BODY()
// Bone name
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
FName BoneName;
// Parent bone name
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
FName ParentBoneName;
// Bone health
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
float Health = 100.0f;
// Damage threshold before dismemberment
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
float DismembermentThreshold = 50.0f;
// Blood effect socket name
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
FName BloodSocketName;
// Whether this bone can be dismembered
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
bool bCanBeDismembered = true;
// Whether this bone is critical (death if dismembered)
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH|Dismemberment")
bool bIsCritical = false;
// Whether this bone is already dismembered
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Dismemberment")
bool bIsDismembered = false;
// Constructor
FDismembermentBoneData()
: BoneName(NAME_None)
, ParentBoneName(NAME_None)
, BloodSocketName(NAME_None)
{
}
};
/**
* Main component for the FLESH dismemberment system
* Handles real-time boolean cutting, multi-layer cutting, and physics interactions
*/
UCLASS(ClassGroup=(FLESH), meta=(BlueprintSpawnableComponent))
class FLESH_API UDismembermentSystem : public UActorComponent
{
GENERATED_BODY()
public:
// Sets default values for this component's properties
UDismembermentSystem();
protected:
// Called when the game starts
virtual void BeginPlay() override;
public:
// Called every frame
virtual void TickComponent(float DeltaTime, ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction) override;
/**
* Perform a cut on the owner's mesh at the specified location and direction
* @param CutLocation - World location of the cut
* @param CutDirection - Direction of the cut
* @param CutWidth - Width of the cut
* @param CutDepth - Depth of the cut
* @return True if the cut was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool PerformCut(const FVector& CutLocation, const FVector& CutDirection, float CutWidth = 1.0f, float CutDepth = 10.0f);
/**
* Perform a dismemberment at the specified bone
* @param BoneName - Name of the bone to dismember
* @param CutDirection - Direction of the cut
* @param DismembermentType - Type of dismemberment to perform
* @return True if the dismemberment was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool DismemberAtBone(const FName& BoneName, const FVector& CutDirection, EDismembermentType DismembermentType = EDismembermentType::Cut);
/**
* Apply damage to a specific bone
* @param BoneName - Name of the bone to damage
* @param Damage - Amount of damage to apply
* @param DamageLocation - World location of the damage
* @param DamageDirection - Direction of the damage
* @param DismembermentType - Type of damage for potential dismemberment
* @return True if damage was applied
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool ApplyBoneDamage(const FName& BoneName, float Damage, const FVector& DamageLocation, const FVector& DamageDirection, EDismembermentType DismembermentType = EDismembermentType::Cut);
/**
* Register a bone for dismemberment
* @param BoneData - Bone data to register
* @return True if the bone was registered
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool RegisterBone(const FDismembermentBoneData& BoneData);
/**
* Set the blood effect for dismemberment
* @param BloodEffect - Niagara system for blood effects
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetBloodEffect(UNiagaraSystem* BloodEffect);
/**
* Set the cut material for dismemberment
* @param CutMaterial - Material to use for cut surfaces
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetCutMaterial(UMaterialInterface* CutMaterial);
/**
* Get the bone data for a specific bone
* @param BoneName - Name of the bone
* @param OutBoneData - Output bone data
* @return True if the bone data was found
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool GetBoneData(const FName& BoneName, FDismembermentBoneData& OutBoneData) const;
/**
* Get all registered bones
* @return Array of all registered bone data
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
TArray<FDismembermentBoneData> GetAllBones() const;
/**
* Reset all dismemberment (restore all bones)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void ResetDismemberment();
GENERATED_BODY()
public:
UDismembermentSystem();
/**
* Initialize the dismemberment system with a target mesh
* @param InTargetMesh - Skeletal mesh to apply dismemberment to
* @return True if initialization was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool Initialize(USkeletalMeshComponent* InTargetMesh);
/**
* Perform a cut at the specified transform
* @param CutTransform - Transform matrix for the cut
* @param CutWidth - Width of the cut
* @param CutDepth - Depth of the cut
* @return True if the cut was successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
bool PerformCut(const FMatrix& CutTransform, float CutWidth = 1.0f, float CutDepth = 10.0f);
/**
* Set the material to use for cut surfaces
* @param InCutMaterial - Material to use
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetCutMaterial(UMaterialInterface* InCutMaterial);
/**
* Set the blood effect to use for dismemberment
* @param InBloodEffect - Niagara system to use for blood effects
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetBloodEffect(UNiagaraSystem* InBloodEffect);
/**
* Set whether to show internal organs
* @param bInShowOrgans - Whether to show organs
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetShowOrgans(bool bInShowOrgans);
/**
* Set whether to enable physics for dismembered parts
* @param bInEnablePhysics - Whether to enable physics
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Dismemberment")
void SetEnablePhysics(bool bInEnablePhysics);
private:
// The skeletal mesh to perform dismemberment on
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> TargetMesh;
// Map of bone names to their corresponding procedural mesh components
UPROPERTY()
TMap<FName, TObjectPtr<UProceduralMeshComponent>> DismemberedParts;
// Registered bones for dismemberment
UPROPERTY(EditAnywhere, Category = "FLESH|Dismemberment")
TArray<FDismembermentBoneData> RegisteredBones;
// Niagara system for blood effects
UPROPERTY(EditAnywhere, Category = "FLESH|Dismemberment")
TObjectPtr<UNiagaraSystem> BloodEffectSystem;
// Material for cut surfaces
UPROPERTY(EditAnywhere, Category = "FLESH|Dismemberment")
TObjectPtr<UMaterialInterface> CutSurfaceMaterial;
// Internal function to create a procedural mesh from a skeletal mesh section
UProceduralMeshComponent* CreateProceduralMeshFromSkeletalMesh(USkeletalMeshComponent* SkelMesh, int32 LODIndex, int32 SectionIndex);
// Internal function to spawn blood effects
void SpawnBloodEffect(const FVector& Location, const FVector& Direction, float Intensity = 1.0f);
// Internal function to find bone index by name
int32 FindBoneIndex(const FName& BoneName) const;
// Target skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> TargetMesh;
// Material for cut surfaces
UPROPERTY()
TObjectPtr<UMaterialInterface> CutMaterial;
// Blood effect
UPROPERTY()
TObjectPtr<UNiagaraSystem> BloodEffect;
// Whether to show organs
UPROPERTY()
bool bShowOrgans;
// Whether to enable physics
UPROPERTY()
bool bEnablePhysics;
};

View File

@@ -10,6 +10,20 @@
class USkeletalMeshComponent;
class UNiagaraSystem;
class UMaterialInterface;
class UDismembermentSystem;
/**
* Dismemberment type enum
*/
UENUM(BlueprintType)
enum class EDismembermentType : uint8
{
Cut UMETA(DisplayName = "Cut"), // Clean cut dismemberment
Tear UMETA(DisplayName = "Tear"), // Torn flesh dismemberment
Blast UMETA(DisplayName = "Blast"), // Explosion dismemberment
Crush UMETA(DisplayName = "Crush"), // Crushing dismemberment
Custom UMETA(DisplayName = "Custom") // Custom dismemberment type
};
/**
* Bone patch type for customizing dismemberment effects

View File

@@ -1,21 +1,12 @@
// @ 2025, Copyright Virtuos Games. All rights reserved.
// © 2021, Brock Marsh. All rights reserved.
#pragma once
#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "NiagaraComponent.h"
#include "NiagaraSystem.h"
#include "BloodPool.generated.h"
class UNiagaraSystem;
class UNiagaraComponent;
/**
* Blood pool actor that creates a decal and blood burst effect
* Used to simulate blood pooling under dismembered body parts
*/
UCLASS(Blueprintable)
UCLASS()
class FLESH_API ABloodPool : public AActor
{
GENERATED_BODY()
@@ -26,59 +17,27 @@ public:
virtual void BeginPlay() override;
/**
* Create blood pool
* @param World - World object
* @param Location - Blood pool location
* @param Scale - Blood pool size
* @param BloodPoolTemplate - Blood pool template class
* @return Created blood pool Actor
*/
UFUNCTION(BlueprintCallable, Category = "Dismemberment|Gore", meta = (WorldContext = "World"))
static ABloodPool* CreateBloodPool(UWorld* World, const FVector& Location, float Scale = 1.0f, TSubclassOf<ABloodPool> BloodPoolTemplate = nullptr);
// Components
UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category="Components")
UPROPERTY(EditAnywhere, Category="FLESH|Gore")
TObjectPtr<class UBoxComponent> Collision;
UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category="Components")
UPROPERTY(EditAnywhere, Category="FLESH|Gore")
TObjectPtr<class UDecalComponent> Decal;
UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category="Components")
TObjectPtr<UNiagaraComponent> BloodBurstEffect;
protected:
FVector RemapSizeForDecal(const FVector In) const;
public:
// Visual Effects
/** The blood decal material to use */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Visual Effects", meta=(DisplayPriority=1))
TObjectPtr<UMaterialInterface> DecalMaterial = nullptr;
/** The blood burst Niagara system to use */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Visual Effects", meta=(DisplayPriority=2))
TObjectPtr<UNiagaraSystem> BloodBurstSystem;
// Timing Parameters
/** Adds a delay before the blood decal appears */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Timing", meta=(ExposeOnSpawn="true", ClampMin="0.0", UIMin="0.0", DisplayPriority=1))
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta=(ExposeOnSpawn="true", ToolTip="Adds a Delay before the Blood Decal Splatters"))
float StartDelay = 0.f;
/** The lifetime of the blood before it dries up and fades away */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Timing", meta=(ExposeOnSpawn="true", ClampMin="1.0", UIMin="1.0", DisplayPriority=2))
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta=(ExposeOnSpawn="true", ToolTip="The Lifetime of the blood before it dries up and fades away"))
float MaxLifetime = 60.f;
/** Time it takes to interpolate to the new size and location */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Timing", meta=(ExposeOnSpawn="true", ClampMin="0.0", UIMin="0.0", DisplayPriority=3))
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta=(ExposeOnSpawn="true", ToolTip="This is a wrapper for Decal Size"))
FVector DecalSize = FVector(100);
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta=(ExposeOnSpawn="true", ToolTip="This can be used to set a relative rotation of the Decal"))
FRotator DecalRotation = FRotator(0);
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta=(ExposeOnSpawn="true", ToolTip="This is the Time it will take in seconds to Lerp to the new Size and Location"))
float InterpTime = 0.3f;
// Appearance Parameters
/** Size of the blood decal */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Appearance", meta=(ExposeOnSpawn="true", DisplayPriority=1))
FVector DecalSize = FVector(100);
/** Relative rotation of the decal */
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category="Dismemberment|Appearance", meta=(ExposeOnSpawn="true", DisplayPriority=2))
FRotator DecalRotation = FRotator(0);
UPROPERTY(BlueprintReadWrite, Category="FLESH|Gore", meta = (ExposeOnSpawn="true"))
TObjectPtr<UMaterialInterface> DecalMaterial = nullptr;
};

View File

@@ -0,0 +1,190 @@
// FLESH Physics Optimizer
// Provides optimization techniques for soft body physics simulation
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "FLESHPhysicsOptimizer.generated.h"
/**
* Optimization level for physics simulation
*/
UENUM(BlueprintType)
enum class EFLESHPhysicsOptimizationLevel : uint8
{
// No optimization, full simulation
None UMETA(DisplayName = "None"),
// Low optimization, good quality
Low UMETA(DisplayName = "Low"),
// Medium optimization, balanced
Medium UMETA(DisplayName = "Medium"),
// High optimization, performance focused
High UMETA(DisplayName = "High"),
// Extreme optimization, for very low-end devices
Extreme UMETA(DisplayName = "Extreme")
};
/**
* Spatial partitioning method
*/
UENUM(BlueprintType)
enum class EFLESHSpatialPartitioning : uint8
{
// No spatial partitioning
None UMETA(DisplayName = "None"),
// Grid-based partitioning
Grid UMETA(DisplayName = "Grid"),
// Octree partitioning
Octree UMETA(DisplayName = "Octree"),
// Adaptive partitioning based on density
Adaptive UMETA(DisplayName = "Adaptive")
};
/**
* Physics Optimizer class
* Provides optimization techniques for FLESH physics simulation
*/
UCLASS(BlueprintType, Blueprintable)
class FLESH_API UFLESHPhysicsOptimizer : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHPhysicsOptimizer();
/**
* Set optimization level
* @param Level - Optimization level
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetOptimizationLevel(EFLESHPhysicsOptimizationLevel Level);
/**
* Get optimization level
* @return Current optimization level
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
EFLESHPhysicsOptimizationLevel GetOptimizationLevel() const;
/**
* Set spatial partitioning method
* @param Method - Spatial partitioning method
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetSpatialPartitioning(EFLESHSpatialPartitioning Method);
/**
* Get spatial partitioning method
* @return Current spatial partitioning method
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
EFLESHSpatialPartitioning GetSpatialPartitioning() const;
/**
* Set LOD distance thresholds
* @param Distances - Array of distances for each LOD level
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetLODDistances(const TArray<float>& Distances);
/**
* Get LOD level for distance
* @param Distance - Distance from camera
* @return LOD level (0 = highest detail)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
int32 GetLODForDistance(float Distance) const;
/**
* Set maximum number of physics substeps
* @param MaxSteps - Maximum number of substeps
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetMaxSubsteps(int32 MaxSteps);
/**
* Get maximum number of physics substeps
* @return Maximum number of substeps
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
int32 GetMaxSubsteps() const;
/**
* Enable/disable multithreaded physics
* @param bEnable - Whether to enable multithreaded physics
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetMultithreadedPhysics(bool bEnable);
/**
* Check if multithreaded physics is enabled
* @return Whether multithreaded physics is enabled
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
bool IsMultithreadedPhysicsEnabled() const;
/**
* Set distance-based simulation scale
* @param MinDistance - Minimum distance for full simulation
* @param MaxDistance - Maximum distance for reduced simulation
* @param MinScale - Simulation scale at max distance (0-1)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void SetDistanceBasedSimulationScale(float MinDistance, float MaxDistance, float MinScale);
/**
* Get simulation scale for distance
* @param Distance - Distance from camera
* @return Simulation scale (0-1)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
float GetSimulationScaleForDistance(float Distance) const;
/**
* Apply optimization settings to physics component
* @param Component - Physics component to optimize
* @param Distance - Distance from camera
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|Optimization")
void ApplyOptimizationToComponent(UPrimitiveComponent* Component, float Distance);
private:
// Current optimization level
UPROPERTY()
EFLESHPhysicsOptimizationLevel OptimizationLevel;
// Current spatial partitioning method
UPROPERTY()
EFLESHSpatialPartitioning SpatialPartitioningMethod;
// LOD distance thresholds
UPROPERTY()
TArray<float> LODDistances;
// Maximum number of physics substeps
UPROPERTY()
int32 MaxSubsteps;
// Whether multithreaded physics is enabled
UPROPERTY()
bool bMultithreadedPhysics;
// Distance-based simulation parameters
UPROPERTY()
float MinSimulationDistance;
UPROPERTY()
float MaxSimulationDistance;
UPROPERTY()
float MinSimulationScale;
};

View File

@@ -0,0 +1,513 @@
// FLESH Soft Body Physics System
// 提供高性能的软体物理模拟系统
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "Physics/FLESHPhysicsOptimizer.h"
#include "FLESHSoftBodySystem.generated.h"
// Forward declarations
class UStaticMeshComponent;
class USkeletalMeshComponent;
class UProceduralMeshComponent;
/**
* Soft body simulation method
*/
UENUM(BlueprintType)
enum class EFLESHSoftBodyMethod : uint8
{
// Verlet integration
Verlet UMETA(DisplayName = "Verlet Integration"),
// Position-based dynamics
PositionBased UMETA(DisplayName = "Position Based Dynamics"),
// Mass-spring system
MassSpring UMETA(DisplayName = "Mass-Spring System"),
// Finite element method
FiniteElement UMETA(DisplayName = "Finite Element Method")
};
/**
* Soft body mesh type
*/
UENUM(BlueprintType)
enum class EFLESHSoftBodyMeshType : uint8
{
Tetrahedral UMETA(DisplayName = "Tetrahedral"),
Hexahedral UMETA(DisplayName = "Hexahedral"),
Surface UMETA(DisplayName = "Surface"),
Chain UMETA(DisplayName = "Chain")
};
/**
* LOD level for soft body simulation
*/
UENUM(BlueprintType)
enum class EFLESHSoftBodyLOD : uint8
{
LOD0 UMETA(DisplayName = "High Detail"), // Full simulation
LOD1 UMETA(DisplayName = "Medium Detail"), // Reduced particle count
LOD2 UMETA(DisplayName = "Low Detail"), // Minimal particle count
LOD3 UMETA(DisplayName = "Simplified") // Extremely simplified
};
// Soft body particle
struct FSoftBodyParticle
{
FVector Position;
FVector OldPosition;
FVector Velocity;
FVector Force;
float Mass;
float InvMass; // 1.0f / Mass, precomputed for efficiency
bool bIsFixed;
int32 LODLevel; // Which LOD level this particle belongs to
FSoftBodyParticle()
: Position(FVector::ZeroVector)
, OldPosition(FVector::ZeroVector)
, Velocity(FVector::ZeroVector)
, Force(FVector::ZeroVector)
, Mass(1.0f)
, InvMass(1.0f)
, bIsFixed(false)
, LODLevel(0)
{
}
FSoftBodyParticle(const FVector& InPosition, float InMass = 1.0f, bool bInIsFixed = false, int32 InLODLevel = 0)
: Position(InPosition)
, OldPosition(InPosition)
, Velocity(FVector::ZeroVector)
, Force(FVector::ZeroVector)
, Mass(InMass)
, InvMass(InMass > SMALL_NUMBER ? 1.0f / InMass : 0.0f)
, bIsFixed(bInIsFixed)
, LODLevel(InLODLevel)
{
}
};
/**
* Soft body physics system
* Provides high-performance soft body physics simulation
*/
UCLASS(BlueprintType, Blueprintable)
class FLESH_API UFLESHSoftBodySystem : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHSoftBodySystem();
/**
* Initialize soft body system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void Initialize();
/**
* Set physics optimizer
* @param Optimizer - Physics optimizer
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetPhysicsOptimizer(UFLESHPhysicsOptimizer* Optimizer);
/**
* Get physics optimizer
* @return Current physics optimizer
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
UFLESHPhysicsOptimizer* GetPhysicsOptimizer() const;
/**
* Set soft body simulation method
* @param Method - Simulation method
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetSimulationMethod(EFLESHSoftBodyMethod Method);
/**
* Get soft body simulation method
* @return Current simulation method
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
EFLESHSoftBodyMethod GetSimulationMethod() const;
/**
* Set solver iterations
* @param Iterations - Number of solver iterations
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetSolverIterations(int32 Iterations);
/**
* Get solver iterations
* @return Current solver iterations
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
int32 GetSolverIterations() const;
/**
* Set time step
* @param TimeStep - Time step
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetTimeStep(float TimeStep);
/**
* Get time step
* @return Current time step
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetTimeStep() const;
/**
* Create soft body from static mesh
* @param MeshComponent - Static mesh component
* @param MeshType - Soft body mesh type
* @param Resolution - Mesh resolution
* @return Whether successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
bool CreateSoftBodyFromStaticMesh(UStaticMeshComponent* MeshComponent, EFLESHSoftBodyMeshType MeshType, int32 Resolution = 8);
/**
* Create soft body from skeletal mesh
* @param MeshComponent - Skeletal mesh component
* @param MeshType - Soft body mesh type
* @param Resolution - Mesh resolution
* @return Whether successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
bool CreateSoftBodyFromSkeletalMesh(USkeletalMeshComponent* MeshComponent, EFLESHSoftBodyMeshType MeshType, int32 Resolution = 8);
/**
* Create soft body from procedural mesh
* @param MeshComponent - Procedural mesh component
* @param MeshType - Soft body mesh type
* @return Whether successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
bool CreateSoftBodyFromProceduralMesh(UProceduralMeshComponent* MeshComponent, EFLESHSoftBodyMeshType MeshType);
/**
* Set gravity
* @param Gravity - Gravity vector
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetGravity(const FVector& Gravity);
/**
* Get gravity
* @return Current gravity vector
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
FVector GetGravity() const;
/**
* Set damping
* @param Damping - Damping coefficient (0-1)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetDamping(float Damping);
/**
* Get damping
* @return Current damping coefficient
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetDamping() const;
/**
* Set stiffness
* @param Stiffness - Stiffness coefficient (0-1)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetStiffness(float Stiffness);
/**
* Get stiffness
* @return Current stiffness coefficient
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetStiffness() const;
/**
* Set volume stiffness
* @param VolumeStiffness - Volume stiffness coefficient (0-1)
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetVolumeStiffness(float VolumeStiffness);
/**
* Get volume stiffness
* @return Current volume stiffness coefficient
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetVolumeStiffness() const;
/**
* Set pressure
* @param Pressure - Pressure coefficient
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetPressure(float Pressure);
/**
* Get pressure
* @return Current pressure coefficient
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetPressure() const;
/**
* Add collision plane
* @param Location - Plane location
* @param Normal - Plane normal
* @return Plane ID
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
int32 AddCollisionPlane(const FVector& Location, const FVector& Normal);
/**
* Remove collision plane
* @param PlaneID - Plane ID
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void RemoveCollisionPlane(int32 PlaneID);
/**
* Add anchor point
* @param VertexIndex - Vertex index
* @param Location - Anchor location
* @param Stiffness - Anchor stiffness (0-1)
* @return Anchor ID
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
int32 AddAnchorPoint(int32 VertexIndex, const FVector& Location, float Stiffness = 1.0f);
/**
* Remove anchor point
* @param AnchorID - Anchor ID
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void RemoveAnchorPoint(int32 AnchorID);
/**
* Update simulation
* @param DeltaTime - Time delta
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void UpdateSimulation(float DeltaTime);
/**
* Enable/disable adaptive time step
* @param bEnable - Whether to enable
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetAdaptiveTimeStep(bool bEnable);
/**
* Check if adaptive time step is enabled
* @return Whether adaptive time step is enabled
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
bool IsAdaptiveTimeStepEnabled() const;
/**
* Enable/disable continuous collision detection
* @param bEnable - Whether to enable
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetContinuousCollisionDetection(bool bEnable);
/**
* Check if continuous collision detection is enabled
* @return Whether continuous collision detection is enabled
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
bool IsContinuousCollisionDetectionEnabled() const;
/**
* Set collision margin
* @param Margin - Collision margin
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetCollisionMargin(float Margin);
/**
* Get collision margin
* @return Current collision margin
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetCollisionMargin() const;
/**
* Set maximum velocity
* @param MaxVelocity - Maximum velocity
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void SetMaxVelocity(float MaxVelocity);
/**
* Get maximum velocity
* @return Current maximum velocity
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
float GetMaxVelocity() const;
/**
* Apply impulse
* @param Location - Impulse location
* @param Force - Impulse force
* @param Radius - Radius of impact
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void ApplyImpulse(const FVector& Location, const FVector& Force, float Radius);
/**
* Apply wind field
* @param Direction - Wind direction
* @param Strength - Wind strength
* @param Turbulence - Turbulence
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Physics|SoftBody")
void ApplyWindField(const FVector& Direction, float Strength, float Turbulence);
private:
// Physics optimizer
UPROPERTY()
TObjectPtr<UFLESHPhysicsOptimizer> PhysicsOptimizer;
// Simulation method
UPROPERTY()
EFLESHSoftBodyMethod SimulationMethod;
// Solver iterations
UPROPERTY()
int32 SolverIterations;
// Time step
UPROPERTY()
float TimeStep;
// Gravity
UPROPERTY()
FVector Gravity;
// Damping
UPROPERTY()
float Damping;
// Stiffness
UPROPERTY()
float Stiffness;
// Volume stiffness
UPROPERTY()
float VolumeStiffness;
// Pressure
UPROPERTY()
float Pressure;
// Collision margin
UPROPERTY()
float CollisionMargin;
// Maximum velocity
UPROPERTY()
float MaxVelocity;
// Adaptive time step
UPROPERTY()
bool bAdaptiveTimeStep;
// Continuous collision detection
UPROPERTY()
bool bContinuousCollisionDetection;
// Enable adaptive LOD system
UPROPERTY()
bool bEnableAdaptiveLOD;
// LOD distance thresholds
UPROPERTY()
TArray<float> LODDistanceThresholds;
// Particle array
TArray<FSoftBodyParticle> Particles;
// Constraint array (for distance constraints)
TArray<TPair<int32, int32>> DistanceConstraints;
// Rest lengths for distance constraints
TArray<float> RestLengths;
// Internal method: Create tetrahedral mesh
void CreateTetrahedralMesh(const TArray<FVector>& Vertices, const TArray<int32>& Indices, int32 Resolution);
// Internal method: Create hexahedral mesh
void CreateHexahedralMesh(const TArray<FVector>& Vertices, const TArray<int32>& Indices, int32 Resolution);
// Internal method: Create surface mesh
void CreateSurfaceMesh(const TArray<FVector>& Vertices, const TArray<int32>& Indices);
// Internal method: Create chain mesh
void CreateChainMesh(const TArray<FVector>& Vertices, const TArray<int32>& Indices);
// Set adaptive LOD
void SetAdaptiveLOD(bool bEnable);
// Check if adaptive LOD is enabled
bool IsAdaptiveLODEnabled() const;
// Set LOD distance thresholds
void SetLODDistanceThresholds(const TArray<float>& Distances);
// Get LOD level for distance
EFLESHSoftBodyLOD GetLODForDistance(float Distance) const;
// Update particle LOD levels based on camera distance
void UpdateParticleLODs(const FVector& CameraPosition);
// Create particles with LOD levels
void CreateParticlesWithLOD(const TArray<FVector>& Positions, int32 BaseLODLevel = 0);
// Internal method: Verlet integration
void SolveVerlet(float DeltaTime);
// Internal method: Position-based constraints
void SolvePositionBased(float DeltaTime);
// Internal method: Spring mass system
void SolveMassSpring(float DeltaTime);
// Internal method: Finite element method
void SolveFiniteElement(float DeltaTime);
// Internal method: Apply collisions
void SolveCollisions();
// Internal method: Apply distance constraints
void SolveDistanceConstraints();
// Internal method: Apply volume constraints
void SolveVolumeConstraints();
// Internal method: Apply shape matching constraints
void SolveShapeMatchingConstraints();
// Internal method: Apply boundary constraints
void SolveBoundaryConstraints();
// Internal method: Update mesh
void UpdateMesh();
};

View File

@@ -0,0 +1,235 @@
// FLESH Performance Test System
// Provides performance testing and benchmarking functionality
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "Physics/FLESHSoftBodySystem.h"
#include "Physics/FLESHPhysicsOptimizer.h"
#include "FLESHPerformanceTest.generated.h"
/**
* Performance test types
*/
UENUM(BlueprintType)
enum class EFLESHPerformanceTestType : uint8
{
// Soft body simulation performance test
SoftBodySimulation UMETA(DisplayName = "Soft Body Simulation"),
// Boolean cutting performance test
BooleanCutting UMETA(DisplayName = "Boolean Cutting"),
// Physics optimizer performance test
PhysicsOptimizer UMETA(DisplayName = "Physics Optimizer"),
// Multithreading performance test
Multithreading UMETA(DisplayName = "Multithreading"),
// Distance scaling performance test
DistanceScaling UMETA(DisplayName = "Distance Scaling")
};
/**
* Performance test result
*/
USTRUCT(BlueprintType)
struct FFLESHPerformanceResult
{
GENERATED_BODY()
// Test name
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
FString TestName;
// Execution time (milliseconds)
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
float ExecutionTimeMs;
// Memory usage (KB)
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
int32 MemoryUsageKB;
// Frames per second
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
float FramesPerSecond;
// Number of vertices processed
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
int32 VertexCount;
// Number of triangles processed
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
int32 TriangleCount;
// Number of physics objects processed
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
int32 PhysicsObjectCount;
// Number of constraints processed
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
int32 ConstraintCount;
// Test passed/failed
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
bool bPassed;
// Additional information
UPROPERTY(BlueprintReadOnly, Category = "FLESH|Performance")
FString AdditionalInfo;
FFLESHPerformanceResult()
: ExecutionTimeMs(0.0f)
, MemoryUsageKB(0)
, FramesPerSecond(0.0f)
, VertexCount(0)
, TriangleCount(0)
, PhysicsObjectCount(0)
, ConstraintCount(0)
, bPassed(false)
{
}
};
/**
* Performance test system
* Provides performance testing and benchmarking functionality
*/
UCLASS(BlueprintType, Blueprintable)
class FLESH_API UFLESHPerformanceTest : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHPerformanceTest();
/**
* Initialize performance test system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
void Initialize();
/**
* Run performance test
* @param TestType - Test type
* @param Iterations - Number of iterations
* @param ComplexityLevel - Complexity level (1-10)
* @return Test result
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
FFLESHPerformanceResult RunPerformanceTest(EFLESHPerformanceTestType TestType, int32 Iterations = 100, int32 ComplexityLevel = 5);
/**
* Run all performance tests
* @param Iterations - Number of iterations
* @param ComplexityLevel - Complexity level (1-10)
* @return Test result array
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
TArray<FFLESHPerformanceResult> RunAllPerformanceTests(int32 Iterations = 100, int32 ComplexityLevel = 5);
/**
* Set soft body system
* @param SoftBodySystem - Soft body system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
void SetSoftBodySystem(UFLESHSoftBodySystem* SoftBodySystem);
/**
* Get soft body system
* @return Current soft body system
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
UFLESHSoftBodySystem* GetSoftBodySystem() const;
/**
* Set physics optimizer
* @param PhysicsOptimizer - Physics optimizer
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
void SetPhysicsOptimizer(UFLESHPhysicsOptimizer* PhysicsOptimizer);
/**
* Get physics optimizer
* @return Current physics optimizer
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
UFLESHPhysicsOptimizer* GetPhysicsOptimizer() const;
/**
* Set benchmark thresholds
* @param MaxExecutionTimeMs - Maximum execution time (milliseconds)
* @param MinFramesPerSecond - Minimum frames per second
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
void SetBenchmarkThresholds(float MaxExecutionTimeMs, float MinFramesPerSecond);
/**
* Save performance test results to CSV file
* @param Results - Test result array
* @param FilePath - File path
* @return Whether successful
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
bool SaveResultsToCSV(const TArray<FFLESHPerformanceResult>& Results, const FString& FilePath);
/**
* Compare performance test results
* @param ResultA - Test result A
* @param ResultB - Test result B
* @return Performance improvement percentage
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
float CompareResults(const FFLESHPerformanceResult& ResultA, const FFLESHPerformanceResult& ResultB);
/**
* Generate performance test report
* @param Results - Test result array
* @return Report text
*/
UFUNCTION(BlueprintCallable, Category = "FLESH|Performance")
FString GenerateReport(const TArray<FFLESHPerformanceResult>& Results);
private:
// Soft body system
UPROPERTY()
TObjectPtr<UFLESHSoftBodySystem> SoftBodySystem;
// Physics optimizer
UPROPERTY()
TObjectPtr<UFLESHPhysicsOptimizer> PhysicsOptimizer;
// Maximum execution time threshold (milliseconds)
UPROPERTY()
float MaxExecutionTimeThresholdMs;
// Minimum frame rate threshold
UPROPERTY()
float MinFrameRateThreshold;
// Internal method: Test soft body simulation performance
FFLESHPerformanceResult TestSoftBodySimulation(int32 Iterations, int32 ComplexityLevel);
// Internal method: Test boolean cutting performance
FFLESHPerformanceResult TestBooleanCutting(int32 Iterations, int32 ComplexityLevel);
// Internal method: Test physics optimizer performance
FFLESHPerformanceResult TestPhysicsOptimizer(int32 Iterations, int32 ComplexityLevel);
// Internal method: Test multithreading performance
FFLESHPerformanceResult TestMultithreading(int32 Iterations, int32 ComplexityLevel);
// Internal method: Test distance scaling performance
FFLESHPerformanceResult TestDistanceScaling(int32 Iterations, int32 ComplexityLevel);
// Internal method: Create test mesh
void CreateTestMesh(int32 ComplexityLevel, TArray<FVector>& OutVertices, TArray<int32>& OutIndices);
// Internal method: Measure memory usage
int32 MeasureMemoryUsage();
// Internal method: Calculate frame rate
float CalculateFrameRate(float ExecutionTimeMs, int32 Iterations);
};

View File

@@ -1,95 +0,0 @@
#include "DismembermentGraph/DismembermentCompiler.h"
#include "DismembermentGraph/DismembermentGraph.h"
UDismembermentCompiler::UDismembermentCompiler()
{
// Initialize default values
}
bool UDismembermentCompiler::CompileGraph(UDismembermentGraph* InGraph)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
// Store the graph reference
Graph = InGraph;
// Clear compiled data
CompiledNodeData.Empty();
ExecutionOrder.Empty();
// Perform topological sort to determine execution order
if (Graph)
{
// TODO: Implement actual graph compilation
// For now, just add a placeholder node for testing
FCompiledNodeData NodeData;
CompiledNodeData.Add(NodeData);
ExecutionOrder.Add(0);
}
return true;
}
bool UDismembermentCompiler::GetNodeData(int32 NodeIndex, FDismembermentNodeData& OutNodeData) const
{
// Check if node index is valid
if (!CompiledNodeData.IsValidIndex(NodeIndex))
{
return false;
}
// Get compiled node data
const FCompiledNodeData& CompiledData = CompiledNodeData[NodeIndex];
// Create a placeholder node data for now
// In a real implementation, this would extract data from the compiled node
OutNodeData = FDismembermentNodeData();
// Set node name
if (CompiledData.Node)
{
OutNodeData.NodeName = CompiledData.Node->GetFName();
}
else
{
OutNodeData.NodeName = FName(TEXT("Node") + FString::FromInt(NodeIndex));
}
// Set node type based on node index (just for testing)
// In a real implementation, this would be determined by the node type
switch (NodeIndex % 6)
{
case 0:
OutNodeData.NodeType = EDismembermentNodeType::Cut;
break;
case 1:
OutNodeData.NodeType = EDismembermentNodeType::BloodEffect;
break;
case 2:
OutNodeData.NodeType = EDismembermentNodeType::Physics;
break;
case 3:
OutNodeData.NodeType = EDismembermentNodeType::Organ;
break;
case 4:
OutNodeData.NodeType = EDismembermentNodeType::Wound;
break;
case 5:
OutNodeData.NodeType = EDismembermentNodeType::BoneSelection;
break;
default:
OutNodeData.NodeType = EDismembermentNodeType::None;
break;
}
// Add some placeholder parameters for testing
OutNodeData.FloatParameters.Add(TEXT("Width"), 10.0f);
OutNodeData.FloatParameters.Add(TEXT("Depth"), 5.0f);
OutNodeData.VectorParameters.Add(TEXT("Location"), FVector(0.0f, 0.0f, 0.0f));
OutNodeData.VectorParameters.Add(TEXT("Direction"), FVector(0.0f, 0.0f, 1.0f));
OutNodeData.BoolParameters.Add(TEXT("CreateDecal"), true);
OutNodeData.BoolParameters.Add(TEXT("SimulatePhysics"), true);
return true;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,621 +0,0 @@
#include "DismembermentGraph/DismembermentExecutor.h"
#include "Engine/SkeletalMesh.h"
#include "Components/SkeletalMeshComponent.h"
#include "NiagaraSystem.h"
#include "NiagaraComponent.h"
#include "NiagaraFunctionLibrary.h"
#include "Components/DecalComponent.h"
#include "Kismet/GameplayStatics.h"
#include "PhysicalMaterials/PhysicalMaterial.h"
UDismembermentExecutor::UDismembermentExecutor()
{
// Initialize default values
Compiler = nullptr;
TargetActor = nullptr;
TargetSkeletalMesh = nullptr;
// Create boolean cut tool
CutTool = CreateDefaultSubobject<UBooleanCutTool>(TEXT("CutTool"));
}
void UDismembermentExecutor::Initialize(UDismembermentCompiler* InCompiler)
{
// Set compiler reference
Compiler = InCompiler;
}
bool UDismembermentExecutor::Execute(AActor* InTargetActor)
{
// Set target actor
TargetActor = InTargetActor;
// Find skeletal mesh component
if (!FindTargetSkeletalMesh())
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot execute dismemberment graph, skeletal mesh component not found"));
return false;
}
// Check if compiler is valid
if (!Compiler)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot execute dismemberment graph, invalid compiler"));
return false;
}
// Get execution order from compiler
TArray<int32> ExecutionOrder;
if (!Compiler->GetExecutionOrder(ExecutionOrder))
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot execute dismemberment graph, invalid execution order"));
return false;
}
// Clear selected bones
SelectedBones.Empty();
// Execute nodes in order
bool bSuccess = true;
for (int32 NodeIndex : ExecutionOrder)
{
// Execute node
bool bNodeSuccess = ExecuteNode(NodeIndex);
// Log node execution result
FDismembermentNodeData NodeData;
if (Compiler->GetNodeData(NodeIndex, NodeData))
{
FString NodeName = NodeData.NodeName.ToString();
if (bNodeSuccess)
{
UE_LOG(LogTemp, Display, TEXT("FLESH: Successfully executed node %s"), *NodeName);
}
else
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Failed to execute node %s"), *NodeName);
bSuccess = false;
}
}
}
return bSuccess;
}
bool UDismembermentExecutor::FindTargetSkeletalMesh()
{
// Check if target actor is valid
if (!TargetActor)
{
return false;
}
// Get skeletal mesh component
TargetSkeletalMesh = TargetActor->FindComponentByClass<USkeletalMeshComponent>();
return TargetSkeletalMesh != nullptr;
}
void UDismembermentExecutor::AddSelectedBone(const FName& BoneName)
{
// Add bone to selection list
if (!SelectedBones.Contains(BoneName))
{
SelectedBones.Add(BoneName);
}
}
bool UDismembermentExecutor::ApplyCut(const FVector& Location, const FVector& Direction, float Width, float Depth, UMaterialInterface* Material)
{
// Check if target skeletal mesh is valid
if (!TargetSkeletalMesh)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot perform cut, target skeletal mesh is invalid"));
return false;
}
// Check if cut tool is valid
if (!CutTool)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot perform cut, cutting tool is invalid"));
return false;
}
// Set cut material
CutTool->SetCutMaterial(Material);
// Create cut plane
FCutPlane CutPlane;
CutPlane.Location = Location;
CutPlane.Normal = Direction.GetSafeNormal();
// Apply cut to selected bones or entire mesh
bool bSuccess = false;
if (SelectedBones.Num() > 0)
{
// Cut only selected bones
for (const FName& BoneName : SelectedBones)
{
// Cut skeletal mesh at the specified bone
TArray<USkeletalMesh*> CutResults = CutTool->CutSkeletalMesh(
TargetSkeletalMesh->GetSkeletalMeshAsset(),
CutPlane,
BoneName,
true // Create cap
);
if (CutResults.Num() >= 2)
{
// Replace the original skeletal mesh with the first cut result
TargetSkeletalMesh->SetSkeletalMeshAsset(CutResults[0]);
// TODO: Handle the second cut result (detached part)
// This would involve creating a new actor with the second mesh
// and applying physics to it
bSuccess = true;
}
}
}
else
{
// Cut the entire mesh
TArray<USkeletalMesh*> CutResults = CutTool->CutSkeletalMesh(
TargetSkeletalMesh->GetSkeletalMeshAsset(),
CutPlane,
NAME_None, // No specific bone
true // Create cap
);
if (CutResults.Num() >= 2)
{
// Replace the original skeletal mesh with the first cut result
TargetSkeletalMesh->SetSkeletalMeshAsset(CutResults[0]);
// TODO: Handle the second cut result (detached part)
// This would involve creating a new actor with the second mesh
// and applying physics to it
bSuccess = true;
}
}
return bSuccess;
}
bool UDismembermentExecutor::SpawnBloodEffect(const FVector& Location, UNiagaraSystem* BloodEffect, float BloodAmount, float BloodPressure, bool CreateBloodPool, float BloodPoolSize, UMaterialInterface* BloodPoolMaterial)
{
// Check if target actor is valid
if (!TargetActor)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn blood effect, target actor is invalid"));
return false;
}
// Check if blood effect is valid
if (!BloodEffect)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn blood effect, blood particle system is invalid"));
return false;
}
// Get world
UWorld* World = TargetActor->GetWorld();
if (!World)
{
return false;
}
// Spawn blood effect
UNiagaraComponent* BloodComponent = UNiagaraFunctionLibrary::SpawnSystemAtLocation(
World,
BloodEffect,
Location,
FRotator::ZeroRotator,
FVector(1.0f, 1.0f, 1.0f),
true,
true,
ENCPoolMethod::AutoRelease,
true
);
if (!BloodComponent)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn blood effect, failed to create particle system component"));
return false;
}
// Set blood parameters
BloodComponent->SetVariableFloat(FName("BloodAmount"), BloodAmount);
BloodComponent->SetVariableFloat(FName("BloodPressure"), BloodPressure);
// Create blood pool if needed
if (CreateBloodPool && BloodPoolMaterial)
{
// Create a decal component for the blood pool
UDecalComponent* BloodPoolDecal = UGameplayStatics::SpawnDecalAtLocation(
World,
BloodPoolMaterial,
FVector(BloodPoolSize, BloodPoolSize, 10.0f), // Size of the decal
Location,
FRotator(-90.0f, 0.0f, 0.0f), // Rotate to face the ground
10.0f // Lifetime
);
if (BloodPoolDecal)
{
// Set fade parameters
BloodPoolDecal->SetFadeOut(5.0f, 5.0f, false);
}
}
return true;
}
bool UDismembermentExecutor::ApplyPhysics(float Mass, float LinearDamping, float AngularDamping, bool EnableGravity, bool SimulatePhysics, bool GenerateOverlapEvents, UPhysicalMaterial* PhysicalMaterial, float ImpulseForce, float ImpulseRadius)
{
// Check if target skeletal mesh is valid
if (!TargetSkeletalMesh)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot apply physics, target skeletal mesh is invalid"));
return false;
}
// Apply physics settings to the skeletal mesh component
TargetSkeletalMesh->SetSimulatePhysics(SimulatePhysics);
TargetSkeletalMesh->SetEnableGravity(EnableGravity);
TargetSkeletalMesh->SetGenerateOverlapEvents(GenerateOverlapEvents);
// Set mass properties
if (Mass > 0.0f)
{
TargetSkeletalMesh->SetMassOverrideInKg(NAME_None, Mass, true);
}
// Set damping
TargetSkeletalMesh->SetLinearDamping(LinearDamping);
TargetSkeletalMesh->SetAngularDamping(AngularDamping);
// Set physical material if provided
if (PhysicalMaterial)
{
TargetSkeletalMesh->SetPhysMaterialOverride(PhysicalMaterial);
}
// Apply impulse if force is greater than zero
if (ImpulseForce > 0.0f)
{
// Get the component's location
FVector ComponentLocation = TargetSkeletalMesh->GetComponentLocation();
// Apply radial impulse
TargetSkeletalMesh->AddRadialImpulse(
ComponentLocation,
ImpulseRadius,
ImpulseForce,
ERadialImpulseFalloff::RIF_Linear,
true // Apply impulse to all bodies
);
}
return true;
}
bool UDismembermentExecutor::SpawnOrgan(UStaticMesh* OrganMesh, UMaterialInterface* OrganMaterial, const FName& AttachBoneName, const FVector& RelativeLocation, const FRotator& RelativeRotation, const FVector& RelativeScale, bool SimulatePhysics, float DamageMultiplier, bool IsCriticalOrgan, float BloodAmount)
{
// Check if target actor is valid
if (!TargetActor)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn organ, target actor is invalid"));
return false;
}
// Check if organ mesh is valid
if (!OrganMesh)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn organ, organ mesh is invalid"));
return false;
}
// Get world
UWorld* World = TargetActor->GetWorld();
if (!World)
{
return false;
}
// Create a static mesh component for the organ
UStaticMeshComponent* OrganComponent = NewObject<UStaticMeshComponent>(TargetActor, TEXT("PreviewOrganComponent"));
if (!OrganComponent)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot spawn organ, failed to create static mesh component"));
return false;
}
// Register the component
OrganComponent->RegisterComponent();
// Set the mesh and material
OrganComponent->SetStaticMesh(OrganMesh);
if (OrganMaterial)
{
OrganComponent->SetMaterial(0, OrganMaterial);
}
// Set transform
if (TargetSkeletalMesh && !AttachBoneName.IsNone())
{
// Attach to bone if specified
OrganComponent->AttachToComponent(
TargetSkeletalMesh,
FAttachmentTransformRules::KeepRelativeTransform,
AttachBoneName
);
}
else
{
// Attach to actor root
OrganComponent->AttachToComponent(
TargetActor->GetRootComponent(),
FAttachmentTransformRules::KeepRelativeTransform
);
}
// Set relative transform
OrganComponent->SetRelativeLocation(RelativeLocation);
OrganComponent->SetRelativeRotation(RelativeRotation);
OrganComponent->SetRelativeScale3D(RelativeScale);
// Apply physics if needed
if (SimulatePhysics)
{
OrganComponent->SetSimulatePhysics(true);
OrganComponent->SetEnableGravity(true);
OrganComponent->SetCollisionEnabled(ECollisionEnabled::QueryAndPhysics);
// Add a tag to identify this as an organ
OrganComponent->ComponentTags.Add(FName("Organ"));
// Add custom tags for organ properties
if (IsCriticalOrgan)
{
OrganComponent->ComponentTags.Add(FName("CriticalOrgan"));
}
// Store damage multiplier as a custom float
OrganComponent->SetCustomPrimitiveDataFloat(0, DamageMultiplier);
OrganComponent->SetCustomPrimitiveDataFloat(1, BloodAmount);
}
return true;
}
bool UDismembermentExecutor::ApplyWoundEffect(float WoundSize, float WoundDepth, UMaterialInterface* WoundMaterial, UNiagaraSystem* WoundEffect, bool CreateDecal, UMaterialInterface* DecalMaterial, float DecalSize, float DecalLifetime, bool AffectBoneHealth, float BoneDamage)
{
// Check if target actor is valid
if (!TargetActor)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot apply wound effect, target actor is invalid"));
return false;
}
// Get world
UWorld* World = TargetActor->GetWorld();
if (!World)
{
return false;
}
// Get the location from the selected bone or actor location
FVector WoundLocation;
FRotator WoundRotation;
if (TargetSkeletalMesh && SelectedBones.Num() > 0)
{
// Use the first selected bone's location
WoundLocation = TargetSkeletalMesh->GetBoneLocation(SelectedBones[0]);
WoundRotation = TargetSkeletalMesh->GetBoneQuaternion(SelectedBones[0]).Rotator();
}
else if (TargetSkeletalMesh)
{
// Use the skeletal mesh component's location
WoundLocation = TargetSkeletalMesh->GetComponentLocation();
WoundRotation = TargetSkeletalMesh->GetComponentRotation();
}
else
{
// Use the actor's location
WoundLocation = TargetActor->GetActorLocation();
WoundRotation = TargetActor->GetActorRotation();
}
// Spawn wound effect if provided
if (WoundEffect)
{
UNiagaraComponent* WoundEffectComponent = UNiagaraFunctionLibrary::SpawnSystemAtLocation(
World,
WoundEffect,
WoundLocation,
WoundRotation,
FVector(WoundSize, WoundSize, WoundSize),
true,
true,
ENCPoolMethod::AutoRelease,
true
);
if (WoundEffectComponent)
{
// Set wound parameters
WoundEffectComponent->SetVariableFloat(FName("WoundSize"), WoundSize);
WoundEffectComponent->SetVariableFloat(FName("WoundDepth"), WoundDepth);
}
}
// Create decal if needed
if (CreateDecal && DecalMaterial)
{
// Create a decal component for the wound
UDecalComponent* WoundDecal = UGameplayStatics::SpawnDecalAttached(
DecalMaterial,
FVector(DecalSize, DecalSize, DecalSize),
TargetSkeletalMesh ? TargetSkeletalMesh : TargetActor->GetRootComponent(),
NAME_None,
WoundLocation,
WoundRotation,
EAttachLocation::KeepWorldPosition,
DecalLifetime
);
if (WoundDecal)
{
// Set fade parameters
WoundDecal->SetFadeOut(DecalLifetime * 0.8f, DecalLifetime * 0.2f, false);
}
}
// Apply bone damage if needed
if (AffectBoneHealth && TargetSkeletalMesh && SelectedBones.Num() > 0)
{
// This would typically involve a custom bone health system
// For now, we'll just log that bone damage was applied
for (const FName& BoneName : SelectedBones)
{
UE_LOG(LogTemp, Display, TEXT("FLESH: Applied %.2f damage to bone %s"), BoneDamage, *BoneName.ToString());
}
}
return true;
}
bool UDismembermentExecutor::ExecuteNode(int32 NodeIndex)
{
// Check if compiler is valid
if (!Compiler)
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot execute node, compiler is invalid"));
return false;
}
// Get node data from compiler
FDismembermentNodeData NodeData;
if (!Compiler->GetNodeData(NodeIndex, NodeData))
{
UE_LOG(LogTemp, Warning, TEXT("FLESH: Cannot execute node, node data is invalid"));
return false;
}
// Execute node based on its type
bool bSuccess = false;
switch (NodeData.NodeType)
{
case EDismembermentNodeType::Cut:
{
// Get cut parameters
FVector Location = NodeData.GetVectorParameter("Location", FVector::ZeroVector);
FVector Direction = NodeData.GetVectorParameter("Direction", FVector::UpVector);
float Width = NodeData.GetFloatParameter("Width", 1.0f);
float Depth = NodeData.GetFloatParameter("Depth", 10.0f);
UMaterialInterface* Material = Cast<UMaterialInterface>(NodeData.GetObjectParameter("Material"));
// Apply cut
bSuccess = ApplyCut(Location, Direction, Width, Depth, Material);
break;
}
case EDismembermentNodeType::BloodEffect:
{
// Get blood effect parameters
FVector Location = NodeData.GetVectorParameter("Location", FVector::ZeroVector);
UNiagaraSystem* BloodEffect = Cast<UNiagaraSystem>(NodeData.GetObjectParameter("BloodEffect"));
float BloodAmount = NodeData.GetFloatParameter("BloodAmount", 1.0f);
float BloodPressure = NodeData.GetFloatParameter("BloodPressure", 1.0f);
bool CreateBloodPool = NodeData.GetBoolParameter("CreateBloodPool", true);
float BloodPoolSize = NodeData.GetFloatParameter("BloodPoolSize", 100.0f);
UMaterialInterface* BloodPoolMaterial = Cast<UMaterialInterface>(NodeData.GetObjectParameter("BloodPoolMaterial"));
// Spawn blood effect
bSuccess = SpawnBloodEffect(Location, BloodEffect, BloodAmount, BloodPressure, CreateBloodPool, BloodPoolSize, BloodPoolMaterial);
break;
}
case EDismembermentNodeType::Physics:
{
// Get physics parameters
float Mass = NodeData.GetFloatParameter("Mass", 10.0f);
float LinearDamping = NodeData.GetFloatParameter("LinearDamping", 0.01f);
float AngularDamping = NodeData.GetFloatParameter("AngularDamping", 0.01f);
bool EnableGravity = NodeData.GetBoolParameter("EnableGravity", true);
bool SimulatePhysics = NodeData.GetBoolParameter("SimulatePhysics", true);
bool GenerateOverlapEvents = NodeData.GetBoolParameter("GenerateOverlapEvents", true);
UPhysicalMaterial* PhysicalMaterial = Cast<UPhysicalMaterial>(NodeData.GetObjectParameter("PhysicalMaterial"));
float ImpulseForce = NodeData.GetFloatParameter("ImpulseForce", 1000.0f);
float ImpulseRadius = NodeData.GetFloatParameter("ImpulseRadius", 100.0f);
// Apply physics
bSuccess = ApplyPhysics(Mass, LinearDamping, AngularDamping, EnableGravity, SimulatePhysics, GenerateOverlapEvents, PhysicalMaterial, ImpulseForce, ImpulseRadius);
break;
}
case EDismembermentNodeType::Organ:
{
// Get organ parameters
UStaticMesh* OrganMesh = Cast<UStaticMesh>(NodeData.GetObjectParameter("OrganMesh"));
UMaterialInterface* OrganMaterial = Cast<UMaterialInterface>(NodeData.GetObjectParameter("OrganMaterial"));
FName AttachBoneName = NodeData.GetNameParameter("AttachBoneName", NAME_None);
FVector RelativeLocation = NodeData.GetVectorParameter("RelativeLocation", FVector::ZeroVector);
FRotator RelativeRotation = NodeData.GetRotatorParameter("RelativeRotation", FRotator::ZeroRotator);
FVector RelativeScale = NodeData.GetVectorParameter("RelativeScale", FVector::OneVector);
bool SimulatePhysics = NodeData.GetBoolParameter("SimulatePhysics", true);
float DamageMultiplier = NodeData.GetFloatParameter("DamageMultiplier", 1.0f);
bool IsCriticalOrgan = NodeData.GetBoolParameter("IsCriticalOrgan", false);
float BloodAmount = NodeData.GetFloatParameter("BloodAmount", 1.0f);
// Spawn organ
bSuccess = SpawnOrgan(OrganMesh, OrganMaterial, AttachBoneName, RelativeLocation, RelativeRotation, RelativeScale, SimulatePhysics, DamageMultiplier, IsCriticalOrgan, BloodAmount);
break;
}
case EDismembermentNodeType::Wound:
{
// Get wound parameters
float WoundSize = NodeData.GetFloatParameter("WoundSize", 10.0f);
float WoundDepth = NodeData.GetFloatParameter("WoundDepth", 5.0f);
UMaterialInterface* WoundMaterial = Cast<UMaterialInterface>(NodeData.GetObjectParameter("WoundMaterial"));
UNiagaraSystem* WoundEffect = Cast<UNiagaraSystem>(NodeData.GetObjectParameter("WoundEffect"));
bool CreateDecal = NodeData.GetBoolParameter("CreateDecal", true);
UMaterialInterface* DecalMaterial = Cast<UMaterialInterface>(NodeData.GetObjectParameter("DecalMaterial"));
float DecalSize = NodeData.GetFloatParameter("DecalSize", 50.0f);
float DecalLifetime = NodeData.GetFloatParameter("DecalLifetime", 10.0f);
bool AffectBoneHealth = NodeData.GetBoolParameter("AffectBoneHealth", false);
float BoneDamage = NodeData.GetFloatParameter("BoneDamage", 10.0f);
// Apply wound effect
bSuccess = ApplyWoundEffect(WoundSize, WoundDepth, WoundMaterial, WoundEffect, CreateDecal, DecalMaterial, DecalSize, DecalLifetime, AffectBoneHealth, BoneDamage);
break;
}
case EDismembermentNodeType::BoneSelection:
{
// Get bone selection parameters
FName BoneName = NodeData.GetNameParameter("BoneName", NAME_None);
// Add bone to selection
if (!BoneName.IsNone())
{
AddSelectedBone(BoneName);
bSuccess = true;
}
break;
}
default:
UE_LOG(LogTemp, Warning, TEXT("FLESH: Unknown node type"));
break;
}
return bSuccess;
}

View File

@@ -1,8 +0,0 @@
#include "DismembermentGraph/DismembermentGraph.h"
#include "DismembermentGraph/DismembermentGraphAsset.h"
UDismembermentGraph::UDismembermentGraph()
{
// Initialize default values
OwningAsset = nullptr;
}

View File

@@ -1,22 +0,0 @@
#include "DismembermentGraph/DismembermentGraphEditorFactory.h"
#include "DismembermentGraph/DismembermentGraphAsset.h"
UDismembermentGraphEditorFactory::UDismembermentGraphEditorFactory()
{
// Factory configuration
SupportedClass = UDismembermentGraphAsset::StaticClass();
bCreateNew = true;
bEditAfterNew = true;
}
UObject* UDismembermentGraphEditorFactory::FactoryCreateNew(UClass* InClass, UObject* InParent, FName InName, EObjectFlags Flags, UObject* Context, FFeedbackContext* Warn)
{
// Create a new dismemberment graph asset
UDismembermentGraphAsset* NewAsset = NewObject<UDismembermentGraphAsset>(InParent, InClass, InName, Flags);
return NewAsset;
}
bool UDismembermentGraphEditorFactory::ShouldShowInNewMenu() const
{
return true;
}

View File

@@ -1,137 +0,0 @@
#include "DismembermentGraph/DismembermentGraphEditor.h"
#include "DismembermentGraph/DismembermentGraphAsset.h"
#include "DismembermentGraph/DismembermentGraph.h"
#include "DismembermentGraph/DismembermentGraphNode.h"
#include "DismembermentGraph/DismembermentGraphNodeCut.h"
#include "DismembermentGraph/DismembermentGraphNodeBoneSelect.h"
#include "DismembermentGraph/DismembermentGraphNodeBloodEffect.h"
#include "AssetToolsModule.h"
#include "IAssetTools.h"
#include "EdGraphUtilities.h"
#include "Modules/ModuleManager.h"
#include "GraphEditorActions.h"
#include "AssetTypeActions_Base.h"
#include "DismembermentGraph/DismembermentGraphSchema.h"
#include "DismembermentGraph/SDismembermentGraphNode.h"
#include "DismembermentGraph/DismembermentGraphEditorFactory.h"
#include "DismembermentGraph/DismembermentGraphPalette.h"
#include "DismembermentGraph/DismembermentGraphNodeFactory.h"
#include "Styling/AppStyle.h"
#include "GraphEditorSettings.h"
#include "EdGraph/EdGraphSchema.h"
#define LOCTEXT_NAMESPACE "DismembermentGraphEditor"
/**
* Dismemberment graph asset type actions
*/
class FDismembermentGraphAssetTypeActions : public FAssetTypeActions_Base
{
public:
// Constructor
FDismembermentGraphAssetTypeActions(EAssetTypeCategories::Type InAssetCategory)
: AssetCategory(InAssetCategory)
{
}
// FAssetTypeActions_Base interface
virtual FText GetName() const override { return LOCTEXT("DismembermentGraphAssetName", "Dismemberment Graph"); }
virtual FColor GetTypeColor() const override { return FColor(255, 64, 64); }
virtual UClass* GetSupportedClass() const override { return UDismembermentGraphAsset::StaticClass(); }
virtual uint32 GetCategories() override { return AssetCategory; }
virtual bool HasActions(const TArray<UObject*>& InObjects) const override { return false; }
virtual void OpenAssetEditor(const TArray<UObject*>& InObjects, TSharedPtr<IToolkitHost> EditWithinLevelEditor) override
{
for (UObject* Object : InObjects)
{
if (UDismembermentGraphAsset* GraphAsset = Cast<UDismembermentGraphAsset>(Object))
{
TSharedRef<FDismembermentGraphEditor> NewEditor = MakeShareable(new FDismembermentGraphEditor());
NewEditor->InitDismembermentGraphEditor(EToolkitMode::Standalone, EditWithinLevelEditor, GraphAsset);
}
}
}
// End of FAssetTypeActions_Base interface
private:
// Asset category
EAssetTypeCategories::Type AssetCategory;
};
/**
* Dismemberment graph editor module
*/
class FDismembermentGraphEditorModule : public IModuleInterface
{
public:
// IModuleInterface interface
virtual void StartupModule() override
{
// Register asset type actions
IAssetTools& AssetTools = FModuleManager::LoadModuleChecked<FAssetToolsModule>("AssetTools").Get();
// Register asset category
DismembermentGraphAssetCategoryBit = AssetTools.RegisterAdvancedAssetCategory(FName(TEXT("Dismemberment")), LOCTEXT("DismembermentGraphAssetCategory", "Dismemberment"));
// Register asset type actions
TSharedRef<IAssetTypeActions> Action = MakeShareable(new FDismembermentGraphAssetTypeActions(DismembermentGraphAssetCategoryBit));
AssetTools.RegisterAssetTypeActions(Action);
RegisteredAssetTypeActions.Add(Action);
// Register graph editor factory
TSharedPtr<FGraphPanelNodeFactory> NodeFactory = MakeShareable(new FDismembermentGraphNodeFactory);
FEdGraphUtilities::RegisterVisualNodeFactory(NodeFactory);
// Register node factories
RegisterNodeFactory(UDismembermentGraphNodeCut::StaticClass(), LOCTEXT("CutNode", "Cut Node"), LOCTEXT("CutNodeTooltip", "Performs a cut operation"));
RegisterNodeFactory(UDismembermentGraphNodeBoneSelect::StaticClass(), LOCTEXT("BoneSelectNode", "Bone Select Node"), LOCTEXT("BoneSelectNodeTooltip", "Selects bones for operations"));
RegisterNodeFactory(UDismembermentGraphNodeBloodEffect::StaticClass(), LOCTEXT("BloodEffectNode", "Blood Effect Node"), LOCTEXT("BloodEffectNodeTooltip", "Creates blood effects"));
}
virtual void ShutdownModule() override
{
// Unregister asset type actions
if (FModuleManager::Get().IsModuleLoaded("AssetTools"))
{
IAssetTools& AssetTools = FModuleManager::GetModuleChecked<FAssetToolsModule>("AssetTools").Get();
for (TSharedPtr<IAssetTypeActions> Action : RegisteredAssetTypeActions)
{
AssetTools.UnregisterAssetTypeActions(Action.ToSharedRef());
}
}
RegisteredAssetTypeActions.Empty();
// Unregister node factories
for (const auto& Factory : RegisteredNodeFactories)
{
FEdGraphUtilities::UnregisterVisualNodeFactory(Factory);
}
RegisteredNodeFactories.Empty();
}
// End of IModuleInterface interface
private:
// Asset category bit
EAssetTypeCategories::Type DismembermentGraphAssetCategoryBit;
// Registered asset type actions
TArray<TSharedPtr<IAssetTypeActions>> RegisteredAssetTypeActions;
// Registered node factories
TArray<TSharedPtr<FGraphPanelNodeFactory>> RegisteredNodeFactories;
// Register a node factory
void RegisterNodeFactory(UClass* NodeClass, const FText& DisplayName, const FText& Tooltip)
{
TSharedPtr<FDismembermentGraphNodeFactory> NodeFactory = MakeShareable(new FDismembermentGraphNodeFactory(NodeClass, DisplayName, Tooltip));
FEdGraphUtilities::RegisterVisualNodeFactory(NodeFactory);
RegisteredNodeFactories.Add(NodeFactory);
}
};
// Comment out this line to avoid module redefinition
// IMPLEMENT_MODULE(FDismembermentGraphEditorModule, FLESHEditor)
#undef LOCTEXT_NAMESPACE

View File

@@ -1,48 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNode.h"
UDismembermentGraphNode::UDismembermentGraphNode()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.6f, 0.6f, 0.6f);
NodeCategory = FText::FromString("Default");
NodeDescription = FText::FromString("Base dismemberment graph node");
}
void UDismembermentGraphNode::AllocateDefaultPins()
{
// Base implementation does nothing
// Derived classes will override this
}
FText UDismembermentGraphNode::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
// Default implementation returns the class name
return FText::FromString(GetClass()->GetName());
}
FLinearColor UDismembermentGraphNode::GetNodeTitleColor() const
{
return NodeTitleColor;
}
FText UDismembermentGraphNode::GetTooltipText() const
{
return NodeDescription;
}
FText UDismembermentGraphNode::GetMenuCategory() const
{
return NodeCategory;
}
void UDismembermentGraphNode::CompileNode(class FDismembermentCompiler* Compiler)
{
// Base implementation does nothing
// Derived classes will override this
}
void UDismembermentGraphNode::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Base implementation does nothing
// Derived classes will override this
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodeBloodEffect.h"
UDismembermentGraphNodeBloodEffect::UDismembermentGraphNodeBloodEffect()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.8f, 0.0f, 0.0f); // Red for blood
NodeCategory = FText::FromString("Effects");
NodeDescription = FText::FromString("Adds blood effect to the dismemberment");
}
void UDismembermentGraphNodeBloodEffect::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodeBloodEffect::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Blood Effect");
}
void UDismembermentGraphNodeBloodEffect::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodeBloodEffect::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodeBoneSelect.h"
UDismembermentGraphNodeBoneSelect::UDismembermentGraphNodeBoneSelect()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.8f, 0.8f, 0.2f); // Yellow for bone
NodeCategory = FText::FromString("Selection");
NodeDescription = FText::FromString("Selects bones for dismemberment");
}
void UDismembermentGraphNodeBoneSelect::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodeBoneSelect::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Bone Selection");
}
void UDismembermentGraphNodeBoneSelect::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodeBoneSelect::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodeCut.h"
UDismembermentGraphNodeCut::UDismembermentGraphNodeCut()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.2f, 0.6f, 0.8f); // Blue for cut
NodeCategory = FText::FromString("Operations");
NodeDescription = FText::FromString("Performs cutting operation for dismemberment");
}
void UDismembermentGraphNodeCut::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodeCut::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Cut Operation");
}
void UDismembermentGraphNodeCut::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodeCut::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodeOrgan.h"
UDismembermentGraphNodeOrgan::UDismembermentGraphNodeOrgan()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.8f, 0.4f, 0.4f); // Pink for organs
NodeCategory = FText::FromString("Anatomy");
NodeDescription = FText::FromString("Adds organ to the dismemberment system");
}
void UDismembermentGraphNodeOrgan::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodeOrgan::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Organ");
}
void UDismembermentGraphNodeOrgan::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodeOrgan::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodePhysics.h"
UDismembermentGraphNodePhysics::UDismembermentGraphNodePhysics()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.4f, 0.8f, 0.4f); // Green for physics
NodeCategory = FText::FromString("Physics");
NodeDescription = FText::FromString("Configures physics properties for dismembered parts");
}
void UDismembermentGraphNodePhysics::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodePhysics::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Physics Properties");
}
void UDismembermentGraphNodePhysics::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodePhysics::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,35 +0,0 @@
#include "DismembermentGraph/DismembermentGraphNodeWound.h"
UDismembermentGraphNodeWound::UDismembermentGraphNodeWound()
{
// Initialize default values
NodeTitleColor = FLinearColor(0.8f, 0.2f, 0.2f); // Dark red for wounds
NodeCategory = FText::FromString("Effects");
NodeDescription = FText::FromString("Adds wound effect to the dismemberment");
}
void UDismembermentGraphNodeWound::AllocateDefaultPins()
{
// Create input pin
CreatePin(EGPD_Input, TEXT("Exec"), TEXT("In"));
// Create output pin
CreatePin(EGPD_Output, TEXT("Exec"), TEXT("Out"));
}
FText UDismembermentGraphNodeWound::GetNodeTitle(ENodeTitleType::Type TitleType) const
{
return FText::FromString("Wound Effect");
}
void UDismembermentGraphNodeWound::CompileNode(class FDismembermentCompiler* Compiler)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}
void UDismembermentGraphNodeWound::ExecuteNode(class FDismembermentExecutor* Executor)
{
// Implementation will be added in future updates
// This is a placeholder to resolve link errors
}

View File

@@ -1,459 +0,0 @@
#include "DismembermentGraph/DismembermentGraphSchema.h"
#include "DismembermentGraph/DismembermentGraph.h"
#include "DismembermentGraph/DismembermentGraphNode.h"
#include "DismembermentGraph/DismembermentGraphNodeCut.h"
#include "DismembermentGraph/DismembermentGraphNodeBoneSelect.h"
#include "DismembermentGraph/DismembermentGraphNodeBloodEffect.h"
#include "DismembermentGraph/DismembermentGraphNodePhysics.h"
#include "DismembermentGraph/DismembermentGraphNodeOrgan.h"
#include "DismembermentGraph/DismembermentGraphNodeWound.h"
#include "EdGraphNode_Comment.h"
#include "Framework/Commands/GenericCommands.h"
#include "GraphEditorActions.h"
#include "ToolMenus.h"
#define LOCTEXT_NAMESPACE "DismembermentGraphSchema"
// Pin categories
const FName UDismembermentGraphSchema::PC_Exec("Exec");
const FName UDismembermentGraphSchema::PC_Bone("Bone");
const FName UDismembermentGraphSchema::PC_Cut("Cut");
const FName UDismembermentGraphSchema::PC_Blood("Blood");
const FName UDismembermentGraphSchema::PC_Physics("Physics");
const FName UDismembermentGraphSchema::PC_Organ("Organ");
const FName UDismembermentGraphSchema::PC_Wound("Wound");
void UDismembermentGraphSchema::GetGraphContextActions(FGraphContextMenuBuilder& ContextMenuBuilder) const
{
// Add node actions
const FText ToolTip = LOCTEXT("NewDismembermentNodeTooltip", "Add node here");
const FText MenuDesc = LOCTEXT("NewDismembermentNodeMenuDesc", "Add Node");
TArray<TSubclassOf<UDismembermentGraphNode>> NodeClasses;
NodeClasses.Add(UDismembermentGraphNodeCut::StaticClass());
NodeClasses.Add(UDismembermentGraphNodeBoneSelect::StaticClass());
NodeClasses.Add(UDismembermentGraphNodeBloodEffect::StaticClass());
NodeClasses.Add(UDismembermentGraphNodePhysics::StaticClass());
NodeClasses.Add(UDismembermentGraphNodeOrgan::StaticClass());
NodeClasses.Add(UDismembermentGraphNodeWound::StaticClass());
for (TSubclassOf<UDismembermentGraphNode> NodeClass : NodeClasses)
{
UDismembermentGraphNode* NodeTemplate = NodeClass->GetDefaultObject<UDismembermentGraphNode>();
FText NodeCategory = NodeTemplate->NodeCategory;
FText NodeTitle = NodeTemplate->GetNodeTitle(ENodeTitleType::ListView);
FText NodeTooltip = NodeTemplate->GetTooltipText();
TSharedPtr<FDismembermentSchemaAction_NewNode> NewNodeAction(new FDismembermentSchemaAction_NewNode(
NodeCategory,
NodeTitle,
NodeTooltip,
0));
NewNodeAction->NodeClass = NodeClass;
ContextMenuBuilder.AddAction(NewNodeAction);
}
// Add comment node
TSharedPtr<FDismembermentSchemaAction_NewNode> NewCommentAction(new FDismembermentSchemaAction_NewNode(
FText::GetEmpty(),
LOCTEXT("NewComment", "Comment"),
LOCTEXT("NewCommentTooltip", "Add a comment node"),
0));
NewCommentAction->NodeClass = UEdGraphNode_Comment::StaticClass();
ContextMenuBuilder.AddAction(NewCommentAction);
}
void UDismembermentGraphSchema::GetContextMenuActions(UToolMenu* Menu, UGraphNodeContextMenuContext* Context) const
{
if (Context && Context->Node)
{
FToolMenuSection& Section = Menu->AddSection("DismembermentGraphNodeActions", LOCTEXT("NodeActionsMenuHeader", "Node Actions"));
Section.AddMenuEntry(FGenericCommands::Get().Delete);
Section.AddMenuEntry(FGenericCommands::Get().Cut);
Section.AddMenuEntry(FGenericCommands::Get().Copy);
Section.AddMenuEntry(FGenericCommands::Get().Duplicate);
// Add preview action
Section.AddMenuEntry(
"PreviewNode",
LOCTEXT("PreviewNode", "Preview Node"),
LOCTEXT("PreviewNodeTooltip", "Preview the effect of this node"),
FSlateIcon(),
FUIAction(
FExecuteAction::CreateLambda([Context]()
{
if (const UDismembermentGraphNode* Node = Cast<UDismembermentGraphNode>(Context->Node))
{
// TODO: Implement node preview
}
}),
FCanExecuteAction::CreateLambda([Context]()
{
return Context->Node != nullptr;
})
)
);
}
// Add general graph actions
{
FToolMenuSection& Section = Menu->AddSection("DismembermentGraphActions", LOCTEXT("GraphActionsMenuHeader", "Graph Actions"));
Section.AddMenuEntry(FGenericCommands::Get().SelectAll);
Section.AddMenuEntry(
"ArrangeNodes",
LOCTEXT("ArrangeNodes", "Arrange Nodes"),
LOCTEXT("ArrangeNodesTooltip", "Arrange the nodes in the graph"),
FSlateIcon(),
FUIAction(
FExecuteAction::CreateLambda([Context]()
{
if (Context && Context->Graph)
{
// TODO: Implement node arrangement
}
}),
FCanExecuteAction::CreateLambda([Context]()
{
return Context && Context->Graph;
})
)
);
}
}
const FPinConnectionResponse UDismembermentGraphSchema::CanCreateConnection(const UEdGraphPin* A, const UEdGraphPin* B) const
{
// Make sure the pins are valid
if (!A || !B)
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("PinError", "Invalid pins"));
}
// Make sure the pins are not on the same node
if (A->GetOwningNode() == B->GetOwningNode())
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("SameNode", "Can't connect pins on the same node"));
}
// Check pin directions
const UEdGraphPin* InputPin = nullptr;
const UEdGraphPin* OutputPin = nullptr;
if (A->Direction == EGPD_Input && B->Direction == EGPD_Output)
{
InputPin = A;
OutputPin = B;
}
else if (A->Direction == EGPD_Output && B->Direction == EGPD_Input)
{
InputPin = B;
OutputPin = A;
}
else
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("IncompatibleDirections", "Incompatible pin directions"));
}
// Check pin types
FDismembermentGraphPinType InputType = GetPinType(InputPin);
FDismembermentGraphPinType OutputType = GetPinType(OutputPin);
if (InputType != OutputType)
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("IncompatibleTypes", "Incompatible pin types"));
}
// Check for cycles
if (WouldCreateCycle(OutputPin, InputPin))
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("CycleDetected", "Connection would create a cycle"));
}
// Check if the pins are already connected
for (int32 i = 0; i < InputPin->LinkedTo.Num(); ++i)
{
if (InputPin->LinkedTo[i] == OutputPin)
{
return FPinConnectionResponse(CONNECT_RESPONSE_DISALLOW, LOCTEXT("AlreadyConnected", "Pins are already connected"));
}
}
return FPinConnectionResponse(CONNECT_RESPONSE_MAKE, LOCTEXT("CreateConnection", "Create Connection"));
}
bool UDismembermentGraphSchema::TryCreateConnection(UEdGraphPin* A, UEdGraphPin* B) const
{
// Check if the connection is valid
const FPinConnectionResponse Response = CanCreateConnection(A, B);
if (Response.Response != CONNECT_RESPONSE_MAKE)
{
return false;
}
// Break existing connections on input pins
if (A->Direction == EGPD_Input)
{
A->BreakAllPinLinks();
}
else if (B->Direction == EGPD_Input)
{
B->BreakAllPinLinks();
}
// Make the connection
A->MakeLinkTo(B);
return true;
}
bool UDismembermentGraphSchema::ShouldHidePinDefaultValue(UEdGraphPin* Pin) const
{
return Pin && Pin->LinkedTo.Num() > 0;
}
FLinearColor UDismembermentGraphSchema::GetPinTypeColor(const FEdGraphPinType& PinType) const
{
FDismembermentGraphPinType DismembermentPinType;
DismembermentPinType.PinCategory = PinType.PinCategory;
return GetPinTypeColor(DismembermentPinType);
}
void UDismembermentGraphSchema::BreakNodeLinks(UEdGraphNode& TargetNode) const
{
Super::BreakNodeLinks(TargetNode);
}
void UDismembermentGraphSchema::BreakPinLinks(UEdGraphPin& TargetPin, bool bSendsNodeNotification) const
{
Super::BreakPinLinks(TargetPin, bSendsNodeNotification);
}
void UDismembermentGraphSchema::BreakSinglePinLink(UEdGraphPin* SourcePin, UEdGraphPin* TargetPin) const
{
Super::BreakSinglePinLink(SourcePin, TargetPin);
}
void UDismembermentGraphSchema::DroppedAssetsOnGraph(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraph* Graph) const
{
// TODO: Implement asset dropping
}
void UDismembermentGraphSchema::DroppedAssetsOnNode(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraphNode* Node) const
{
// TODO: Implement asset dropping on nodes
}
void UDismembermentGraphSchema::DroppedAssetsOnPin(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraphPin* Pin) const
{
// TODO: Implement asset dropping on pins
}
void UDismembermentGraphSchema::GetAssetsNodeHoverMessage(const TArray<FAssetData>& Assets, const UEdGraphNode* HoverNode, FString& OutTooltipText, bool& OutOkIcon) const
{
// TODO: Implement asset hover message
OutTooltipText = TEXT("Drop to create a reference");
OutOkIcon = true;
}
void UDismembermentGraphSchema::GetAssetsPinHoverMessage(const TArray<FAssetData>& Assets, const UEdGraphPin* HoverPin, FString& OutTooltipText, bool& OutOkIcon) const
{
// TODO: Implement asset hover message
OutTooltipText = TEXT("Drop to create a reference");
OutOkIcon = true;
}
bool UDismembermentGraphSchema::CanConnectPins(const UEdGraphPin* PinA, const UEdGraphPin* PinB, FDismembermentGraphConnectionResponse& OutResponse) const
{
// Check if the pins are valid
if (!PinA || !PinB)
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_INCOMPATIBLE;
OutResponse.Message = LOCTEXT("PinError", "Invalid pins");
return false;
}
// Check if the pins are on the same node
if (PinA->GetOwningNode() == PinB->GetOwningNode())
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_SELF_CONNECTION;
OutResponse.Message = LOCTEXT("SameNode", "Can't connect pins on the same node");
return false;
}
// Check pin directions
const UEdGraphPin* InputPin = nullptr;
const UEdGraphPin* OutputPin = nullptr;
if (PinA->Direction == EGPD_Input && PinB->Direction == EGPD_Output)
{
InputPin = PinA;
OutputPin = PinB;
}
else if (PinA->Direction == EGPD_Output && PinB->Direction == EGPD_Input)
{
InputPin = PinB;
OutputPin = PinA;
}
else
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_INCOMPATIBLE;
OutResponse.Message = LOCTEXT("IncompatibleDirections", "Incompatible pin directions");
return false;
}
// Check pin types
FDismembermentGraphPinType InputType = GetPinType(InputPin);
FDismembermentGraphPinType OutputType = GetPinType(OutputPin);
if (InputType != OutputType)
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_INCOMPATIBLE;
OutResponse.Message = LOCTEXT("IncompatibleTypes", "Incompatible pin types");
return false;
}
// Check for cycles
if (WouldCreateCycle(OutputPin, InputPin))
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_CYCLE;
OutResponse.Message = LOCTEXT("CycleDetected", "Connection would create a cycle");
return false;
}
// Check if the pins are already connected
for (int32 i = 0; i < InputPin->LinkedTo.Num(); ++i)
{
if (InputPin->LinkedTo[i] == OutputPin)
{
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::ERROR_DISALLOWED;
OutResponse.Message = LOCTEXT("AlreadyConnected", "Pins are already connected");
return false;
}
}
OutResponse.Response = FDismembermentGraphConnectionResponse_K2::OK;
return true;
}
bool UDismembermentGraphSchema::WouldCreateCycle(const UEdGraphPin* PinA, const UEdGraphPin* PinB) const
{
// Check if connecting these pins would create a cycle
const UEdGraphNode* NodeA = PinA->GetOwningNode();
const UEdGraphNode* NodeB = PinB->GetOwningNode();
// If the nodes are the same, there's a cycle
if (NodeA == NodeB)
{
return true;
}
// Depth-first search to check for cycles
TSet<const UEdGraphNode*> VisitedNodes;
TArray<const UEdGraphNode*> NodesToVisit;
NodesToVisit.Push(NodeB);
while (NodesToVisit.Num() > 0)
{
const UEdGraphNode* CurrentNode = NodesToVisit.Pop();
if (VisitedNodes.Contains(CurrentNode))
{
continue;
}
VisitedNodes.Add(CurrentNode);
// Check all output pins
for (int32 PinIndex = 0; PinIndex < CurrentNode->Pins.Num(); ++PinIndex)
{
const UEdGraphPin* Pin = CurrentNode->Pins[PinIndex];
if (Pin->Direction == EGPD_Output)
{
// Check all connections
for (int32 LinkIndex = 0; LinkIndex < Pin->LinkedTo.Num(); ++LinkIndex)
{
const UEdGraphPin* LinkedPin = Pin->LinkedTo[LinkIndex];
const UEdGraphNode* LinkedNode = LinkedPin->GetOwningNode();
// If we found NodeA, there's a cycle
if (LinkedNode == NodeA)
{
return true;
}
// Add the linked node to the nodes to visit
NodesToVisit.Push(LinkedNode);
}
}
}
}
return false;
}
FDismembermentGraphPinType UDismembermentGraphSchema::GetPinType(const UEdGraphPin* Pin)
{
return FDismembermentGraphPinType(Pin->PinType.PinCategory);
}
FLinearColor UDismembermentGraphSchema::GetPinTypeColor(const FDismembermentGraphPinType& PinType)
{
if (PinType.PinCategory == PC_Exec)
{
return FLinearColor::White;
}
else if (PinType.PinCategory == PC_Bone)
{
return FLinearColor(0.9f, 0.9f, 0.2f);
}
else if (PinType.PinCategory == PC_Cut)
{
return FLinearColor(1.0f, 0.0f, 0.0f);
}
else if (PinType.PinCategory == PC_Blood)
{
return FLinearColor(0.8f, 0.0f, 0.0f);
}
else if (PinType.PinCategory == PC_Physics)
{
return FLinearColor(0.0f, 0.8f, 0.8f);
}
else if (PinType.PinCategory == PC_Organ)
{
return FLinearColor(0.8f, 0.4f, 0.4f);
}
else if (PinType.PinCategory == PC_Wound)
{
return FLinearColor(0.6f, 0.0f, 0.0f);
}
return FLinearColor::Black;
}
UDismembermentGraphNode* UDismembermentGraphSchema::CreateNode(TSubclassOf<UDismembermentGraphNode> NodeClass, UEdGraph* ParentGraph, float NodePosX, float NodePosY, bool bSelectNewNode)
{
UDismembermentGraphNode* NewNode = NewObject<UDismembermentGraphNode>(ParentGraph, NodeClass);
NewNode->CreateNewGuid();
NewNode->PostPlacedNewNode();
NewNode->NodePosX = NodePosX;
NewNode->NodePosY = NodePosY;
NewNode->AllocateDefaultPins();
ParentGraph->AddNode(NewNode, true, bSelectNewNode);
return NewNode;
}
// Schema action for creating a new node
FDismembermentSchemaAction_NewNode::FDismembermentSchemaAction_NewNode(const FText& InNodeCategory, const FText& InMenuDesc, const FText& InToolTip, const int32 InGrouping)
: FEdGraphSchemaAction(InNodeCategory, InMenuDesc, InToolTip, InGrouping)
{
}
UEdGraphNode* FDismembermentSchemaAction_NewNode::PerformAction(UEdGraph* ParentGraph, UEdGraphPin* FromPin, const FVector2D Location, bool bSelectNewNode)
{
UDismembermentGraphNode* NewNode = UDismembermentGraphSchema::CreateNode(NodeClass, ParentGraph, Location.X, Location.Y, bSelectNewNode);
return NewNode;
}
#undef LOCTEXT_NAMESPACE

View File

@@ -1,787 +0,0 @@
#include "DismembermentGraph/DismembermentPreviewManager.h"
#include "DismembermentGraph/DismembermentGraphNode.h"
#include "DismembermentGraph/DismembermentGraphNodeCut.h"
#include "DismembermentGraph/DismembermentGraphNodeBoneSelect.h"
#include "DismembermentGraph/DismembermentGraphNodeBloodEffect.h"
#include "DismembermentGraph/DismembermentGraphNodePhysics.h"
#include "DismembermentGraph/DismembermentGraphNodeOrgan.h"
#include "DismembermentGraph/DismembermentGraphNodeWound.h"
#include "Components/SkeletalMeshComponent.h"
#include "Components/StaticMeshComponent.h"
#include "Components/DecalComponent.h"
#include "NiagaraComponent.h"
#include "NiagaraSystem.h"
#include "Engine/StaticMesh.h"
#include "Materials/MaterialInterface.h"
#include "GameFramework/Actor.h"
#include "Engine/World.h"
// Define log category
DEFINE_LOG_CATEGORY(LogFLESHPreview);
UDismembermentPreviewManager::UDismembermentPreviewManager()
: World(nullptr)
, TargetActor(nullptr)
, TargetSkeletalMesh(nullptr)
, PreviewedNode(nullptr)
, PreviewCutPlaneMesh(nullptr)
{
}
void UDismembermentPreviewManager::Initialize(TObjectPtr<UWorld> InWorld)
{
World = InWorld;
UE_LOG(LogFLESHPreview, Log, TEXT("Preview manager initialized"));
}
void UDismembermentPreviewManager::Cleanup()
{
UE_LOG(LogFLESHPreview, Log, TEXT("Cleaning up preview manager"));
ClearPreview();
World = nullptr;
TargetActor = nullptr;
TargetSkeletalMesh = nullptr;
}
void UDismembermentPreviewManager::SetTargetActor(TObjectPtr<AActor> InActor)
{
// Clear any existing preview
ClearPreview();
// Set the new target actor
TargetActor = InActor;
if (TargetActor)
{
UE_LOG(LogFLESHPreview, Log, TEXT("Set target actor: %s"), *TargetActor->GetName());
// Find the skeletal mesh component
FindTargetSkeletalMesh();
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Set empty target actor"));
}
}
bool UDismembermentPreviewManager::PreviewNode(TObjectPtr<UDismembermentGraphNode> Node)
{
// Clear any existing preview
ClearPreview();
// Set the new previewed node
PreviewedNode = Node;
// Check if we have a valid target
if (!TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview node: Invalid target actor or skeletal mesh"));
return false;
}
if (!Node)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview node: Node is null"));
return false;
}
UE_LOG(LogFLESHPreview, Log, TEXT("Previewing node: %s"), *Node->GetNodeTitle(ENodeTitleType::FullTitle).ToString());
// Preview based on node type
if (TObjectPtr<UDismembermentGraphNodeCut> CutNode = Cast<UDismembermentGraphNodeCut>(Node))
{
return PreviewCutNode(CutNode);
}
else if (TObjectPtr<UDismembermentGraphNodeBoneSelect> BoneSelectNode = Cast<UDismembermentGraphNodeBoneSelect>(Node))
{
return PreviewBoneSelectNode(BoneSelectNode);
}
else if (TObjectPtr<UDismembermentGraphNodeBloodEffect> BloodEffectNode = Cast<UDismembermentGraphNodeBloodEffect>(Node))
{
return PreviewBloodEffectNode(BloodEffectNode);
}
else if (TObjectPtr<UDismembermentGraphNodePhysics> PhysicsNode = Cast<UDismembermentGraphNodePhysics>(Node))
{
return PreviewPhysicsNode(PhysicsNode);
}
else if (TObjectPtr<UDismembermentGraphNodeOrgan> OrganNode = Cast<UDismembermentGraphNodeOrgan>(Node))
{
return PreviewOrganNode(OrganNode);
}
else if (TObjectPtr<UDismembermentGraphNodeWound> WoundNode = Cast<UDismembermentGraphNodeWound>(Node))
{
return PreviewWoundNode(WoundNode);
}
UE_LOG(LogFLESHPreview, Warning, TEXT("Unknown node type"));
return false;
}
void UDismembermentPreviewManager::ClearPreview()
{
// Clear the previewed node
PreviewedNode = nullptr;
// Clear all preview components
ClearPreviewComponents();
// Clear preview data
PreviewBoneSelections.Empty();
PreviewCutTransforms.Empty();
PreviewBloodEffectTransforms.Empty();
PreviewOrganTransforms.Empty();
PreviewWoundTransforms.Empty();
UE_LOG(LogFLESHPreview, Verbose, TEXT("Preview cleared"));
}
void UDismembermentPreviewManager::Tick(float DeltaTime)
{
// Update preview effects
if (PreviewedNode && TargetActor && TargetSkeletalMesh)
{
// Update based on node type
if (UDismembermentGraphNodeCut* CutNode = Cast<UDismembermentGraphNodeCut>(PreviewedNode))
{
// Update cut preview
}
else if (UDismembermentGraphNodeBloodEffect* BloodEffectNode = Cast<UDismembermentGraphNodeBloodEffect>(PreviewedNode))
{
// Update blood effect preview
}
else if (UDismembermentGraphNodePhysics* PhysicsNode = Cast<UDismembermentGraphNodePhysics>(PreviewedNode))
{
// Update physics preview
}
}
}
bool UDismembermentPreviewManager::FindTargetSkeletalMesh()
{
TargetSkeletalMesh = nullptr;
if (TargetActor)
{
// Find the first skeletal mesh component
TargetSkeletalMesh = TargetActor->FindComponentByClass<USkeletalMeshComponent>();
if (TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Log, TEXT("Found target skeletal mesh: %s"), *TargetSkeletalMesh->GetName());
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("No skeletal mesh component found on actor %s"), *TargetActor->GetName());
}
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot find skeletal mesh: Target actor is null"));
}
return TargetSkeletalMesh != nullptr;
}
bool UDismembermentPreviewManager::PreviewCutNode(TObjectPtr<UDismembermentGraphNodeCut> CutNode)
{
if (!CutNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview cut node: Invalid parameters"));
return false;
}
// Get the cut parameters
float CutWidth = CutNode->CutWidth;
float CutDepth = CutNode->CutDepth;
UMaterialInterface* CutMaterial = CutNode->bUseCustomMaterial ? CutNode->CustomCutMaterial : nullptr;
// Get the actor's transform
FTransform ActorTransform = TargetActor->GetActorTransform();
// Create a default cut direction if not connected to an input
FVector CutLocation = ActorTransform.GetLocation() + FVector(0.0f, 0.0f, 100.0f);
FVector CutDirection = FVector(1.0f, 0.0f, 0.0f);
// Create the preview cut plane mesh
PreviewCutPlaneMesh = CreatePreviewCutPlaneMesh(CutLocation, CutDirection, CutWidth, CutDepth, CutMaterial);
if (!PreviewCutPlaneMesh)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create cut plane mesh"));
return false;
}
// Store the cut transform for later use
FTransform CutTransform;
CutTransform.SetLocation(CutLocation);
CutTransform.SetRotation(FQuat(FRotationMatrix::MakeFromX(CutDirection)));
CutTransform.SetScale3D(FVector(CutWidth, CutDepth, 1.0f));
PreviewCutTransforms.Add(CutTransform);
UE_LOG(LogFLESHPreview, Log, TEXT("Cut node preview created successfully"));
return PreviewCutPlaneMesh != nullptr;
}
bool UDismembermentPreviewManager::PreviewBoneSelectNode(TObjectPtr<UDismembermentGraphNodeBoneSelect> BoneSelectNode)
{
if (!BoneSelectNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview bone select node: Invalid parameters"));
return false;
}
// Get the bone selection parameters
TArray<FName> BoneNames = BoneSelectNode->BoneNames;
bool bUseRegex = BoneSelectNode->bUseRegex;
FString BoneNamePattern = BoneSelectNode->BoneNamePattern;
bool bIncludeChildren = BoneSelectNode->bIncludeChildren;
// Store the bone selections for later use
PreviewBoneSelections.Append(BoneNames);
UE_LOG(LogFLESHPreview, Log, TEXT("Bone select node preview created successfully, selected %d bones"), BoneNames.Num());
// TODO: Handle regex and child bones
return true;
}
bool UDismembermentPreviewManager::PreviewBloodEffectNode(TObjectPtr<UDismembermentGraphNodeBloodEffect> BloodEffectNode)
{
if (!BloodEffectNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview blood effect node: Invalid parameters"));
return false;
}
// Get the blood effect parameters
UNiagaraSystem* BloodEffect = BloodEffectNode->BloodEffect;
float BloodAmount = BloodEffectNode->BloodAmount;
float BloodPressure = BloodEffectNode->BloodPressure;
bool bCreateBloodPool = BloodEffectNode->bCreateBloodPool;
float BloodPoolSize = BloodEffectNode->BloodPoolSize;
UMaterialInterface* BloodPoolMaterial = BloodEffectNode->BloodPoolMaterial;
if (!BloodEffect)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview blood effect: No blood effect system specified"));
return false;
}
// Get the actor's transform
FTransform ActorTransform = TargetActor->GetActorTransform();
// Create a default blood effect location if not connected to an input
FVector BloodLocation = ActorTransform.GetLocation() + FVector(0.0f, 0.0f, 100.0f);
// Create the preview blood effect
TObjectPtr<UNiagaraComponent> BloodEffectComponent = CreatePreviewBloodEffect(BloodLocation, BloodEffect, BloodAmount, BloodPressure);
if (!BloodEffectComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create blood effect component"));
return false;
}
// Create the preview blood pool if needed
TObjectPtr<UDecalComponent> BloodPoolComponent = nullptr;
if (bCreateBloodPool)
{
BloodPoolComponent = CreatePreviewBloodPool(BloodLocation, BloodPoolSize, BloodPoolMaterial);
if (!BloodPoolComponent)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to create blood pool component"));
}
}
// Store the blood effect transform for later use
FTransform BloodEffectTransform;
BloodEffectTransform.SetLocation(BloodLocation);
PreviewBloodEffectTransforms.Add(BloodEffectTransform);
UE_LOG(LogFLESHPreview, Log, TEXT("Blood effect node preview created successfully"));
return BloodEffectComponent != nullptr;
}
bool UDismembermentPreviewManager::PreviewPhysicsNode(TObjectPtr<UDismembermentGraphNodePhysics> PhysicsNode)
{
if (!PhysicsNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview physics node: Invalid parameters"));
return false;
}
// Get the physics parameters
float Mass = PhysicsNode->Mass;
float LinearDamping = PhysicsNode->LinearDamping;
float AngularDamping = PhysicsNode->AngularDamping;
bool bEnableGravity = PhysicsNode->bEnableGravity;
bool bSimulatePhysics = PhysicsNode->bSimulatePhysics;
bool bGenerateOverlapEvents = PhysicsNode->bGenerateOverlapEvents;
UPhysicalMaterial* PhysicalMaterial = PhysicsNode->PhysicalMaterial;
float ImpulseForce = PhysicsNode->ImpulseForce;
float ImpulseRadius = PhysicsNode->ImpulseRadius;
// Apply physics settings to the target skeletal mesh
if (TargetSkeletalMesh)
{
// Store original values to restore later
TargetSkeletalMesh->SetMassOverrideInKg(NAME_None, Mass, true);
TargetSkeletalMesh->SetLinearDamping(LinearDamping);
TargetSkeletalMesh->SetAngularDamping(AngularDamping);
TargetSkeletalMesh->SetEnableGravity(bEnableGravity);
TargetSkeletalMesh->SetSimulatePhysics(bSimulatePhysics);
TargetSkeletalMesh->SetGenerateOverlapEvents(bGenerateOverlapEvents);
if (PhysicalMaterial)
{
TargetSkeletalMesh->SetPhysMaterialOverride(PhysicalMaterial);
}
UE_LOG(LogFLESHPreview, Log, TEXT("Physics node preview applied successfully, mass: %.2f, linear damping: %.2f, angular damping: %.2f"),
Mass, LinearDamping, AngularDamping);
}
return true;
}
bool UDismembermentPreviewManager::PreviewOrganNode(TObjectPtr<UDismembermentGraphNodeOrgan> OrganNode)
{
if (!OrganNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview organ node: Invalid parameters"));
return false;
}
// Get the organ parameters
UStaticMesh* OrganMesh = OrganNode->OrganMesh;
UMaterialInterface* OrganMaterial = OrganNode->OrganMaterial;
FName AttachBoneName = OrganNode->AttachBoneName;
FVector RelativeLocation = OrganNode->RelativeLocation;
FRotator RelativeRotation = OrganNode->RelativeRotation;
FVector RelativeScale = OrganNode->RelativeScale;
bool bSimulatePhysics = OrganNode->bSimulatePhysics;
float DamageMultiplier = OrganNode->DamageMultiplier;
bool bIsCriticalOrgan = OrganNode->bIsCriticalOrgan;
float BloodAmount = OrganNode->BloodAmount;
if (!OrganMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview organ: No organ mesh specified"));
return false;
}
// Create the preview organ
TObjectPtr<UStaticMeshComponent> OrganComponent = CreatePreviewOrgan(OrganMesh, OrganMaterial, AttachBoneName, RelativeLocation, RelativeRotation, RelativeScale);
if (!OrganComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create organ component"));
return false;
}
// Store the organ transform for later use
FTransform OrganTransform;
if (TargetSkeletalMesh && !AttachBoneName.IsNone())
{
FTransform BoneTransform = TargetSkeletalMesh->GetBoneTransform(TargetSkeletalMesh->GetBoneIndex(AttachBoneName));
OrganTransform = FTransform(RelativeRotation, RelativeLocation, RelativeScale) * BoneTransform;
}
else
{
OrganTransform = FTransform(RelativeRotation, RelativeLocation, RelativeScale) * TargetActor->GetActorTransform();
}
PreviewOrganTransforms.Add(OrganTransform);
UE_LOG(LogFLESHPreview, Log, TEXT("Organ node preview created successfully, attached to bone: %s"),
AttachBoneName.IsNone() ? TEXT("None") : *AttachBoneName.ToString());
return OrganComponent != nullptr;
}
bool UDismembermentPreviewManager::PreviewWoundNode(TObjectPtr<UDismembermentGraphNodeWound> WoundNode)
{
if (!WoundNode || !TargetActor || !TargetSkeletalMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot preview wound node: Invalid parameters"));
return false;
}
// Get the wound parameters
float WoundSize = WoundNode->WoundSize;
float WoundDepth = WoundNode->WoundDepth;
UMaterialInterface* WoundMaterial = WoundNode->WoundMaterial;
UNiagaraSystem* WoundEffect = WoundNode->WoundEffect;
bool bCreateDecal = WoundNode->bCreateDecal;
UMaterialInterface* DecalMaterial = WoundNode->DecalMaterial;
float DecalSize = WoundNode->DecalSize;
float DecalLifetime = WoundNode->DecalLifetime;
bool bAffectBoneHealth = WoundNode->bAffectBoneHealth;
float BoneDamage = WoundNode->BoneDamage;
// Get the actor's transform
FTransform ActorTransform = TargetActor->GetActorTransform();
// Create a default wound location if not connected to an input
FVector WoundLocation = ActorTransform.GetLocation() + FVector(0.0f, 0.0f, 100.0f);
// Create the preview wound effect
TObjectPtr<UNiagaraComponent> WoundEffectComponent = nullptr;
if (WoundEffect)
{
WoundEffectComponent = UNiagaraFunctionLibrary::SpawnSystemAttached(
WoundEffect,
TargetSkeletalMesh,
NAME_None,
WoundLocation,
FRotator::ZeroRotator,
EAttachLocation::KeepWorldPosition,
false);
if (WoundEffectComponent)
{
PreviewNiagaraComponents.Add(WoundEffectComponent);
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to create wound effect component"));
}
}
// Create the preview wound decal if needed
TObjectPtr<UDecalComponent> WoundDecalComponent = nullptr;
if (bCreateDecal && DecalMaterial)
{
WoundDecalComponent = CreatePreviewWound(WoundLocation, DecalSize, DecalMaterial);
if (!WoundDecalComponent)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to create wound decal component"));
}
}
// Store the wound transform for later use
FTransform WoundTransform;
WoundTransform.SetLocation(WoundLocation);
PreviewWoundTransforms.Add(WoundTransform);
UE_LOG(LogFLESHPreview, Log, TEXT("Wound node preview created successfully, size: %.2f, depth: %.2f"), WoundSize, WoundDepth);
return WoundEffectComponent != nullptr || WoundDecalComponent != nullptr;
}
TObjectPtr<UStaticMeshComponent> UDismembermentPreviewManager::CreatePreviewCutPlaneMesh(const FVector& Location, const FVector& Direction, float Width, float Depth, UMaterialInterface* Material)
{
if (!World || !TargetActor)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot create cut plane: Invalid world or target actor"));
return nullptr;
}
// Create a static mesh component for the cut plane
TObjectPtr<UStaticMeshComponent> CutPlaneMeshComponent = NewObject<UStaticMeshComponent>(TargetActor, TEXT("CutPlaneMeshComponent"));
if (!CutPlaneMeshComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create cut plane component"));
return nullptr;
}
// Register the component
CutPlaneMeshComponent->RegisterComponent();
// Set the mesh to a plane
UStaticMesh* PlaneMesh = LoadObject<UStaticMesh>(nullptr, TEXT("/Engine/BasicShapes/Plane.Plane"));
if (PlaneMesh)
{
CutPlaneMeshComponent->SetStaticMesh(PlaneMesh);
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to load plane mesh"));
}
// Set the material
if (Material)
{
CutPlaneMeshComponent->SetMaterial(0, Material);
}
else
{
// Use a default material
UMaterialInterface* DefaultMaterial = LoadObject<UMaterialInterface>(nullptr, TEXT("/Engine/BasicShapes/BasicShapeMaterial.BasicShapeMaterial"));
if (DefaultMaterial)
{
CutPlaneMeshComponent->SetMaterial(0, DefaultMaterial);
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to load default material"));
}
}
// Set the transform
FRotator Rotation = FRotationMatrix::MakeFromX(Direction).Rotator();
CutPlaneMeshComponent->SetWorldLocationAndRotation(Location, Rotation);
CutPlaneMeshComponent->SetWorldScale3D(FVector(Width, Depth, 1.0f));
// Add to the preview components
PreviewStaticMeshComponents.Add(CutPlaneMeshComponent);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Created cut plane mesh, location: %s, direction: %s"),
*Location.ToString(), *Direction.ToString());
return CutPlaneMeshComponent;
}
TObjectPtr<UNiagaraComponent> UDismembermentPreviewManager::CreatePreviewBloodEffect(const FVector& Location, UNiagaraSystem* BloodEffect, float BloodAmount, float BloodPressure)
{
if (!World || !TargetActor || !BloodEffect)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot create blood effect: Invalid parameters"));
return nullptr;
}
// Create a Niagara component for the blood effect
TObjectPtr<UNiagaraComponent> BloodEffectComponent = UNiagaraFunctionLibrary::SpawnSystemAttached(
BloodEffect,
TargetSkeletalMesh,
NAME_None,
Location,
FRotator::ZeroRotator,
EAttachLocation::KeepWorldPosition,
false);
if (!BloodEffectComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create blood effect component"));
return nullptr;
}
// Set parameters
BloodEffectComponent->SetFloatParameter(TEXT("BloodAmount"), BloodAmount);
BloodEffectComponent->SetFloatParameter(TEXT("BloodPressure"), BloodPressure);
// Add to the preview components
PreviewNiagaraComponents.Add(BloodEffectComponent);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Created blood effect, location: %s, blood amount: %.2f, blood pressure: %.2f"),
*Location.ToString(), BloodAmount, BloodPressure);
return BloodEffectComponent;
}
TObjectPtr<UDecalComponent> UDismembermentPreviewManager::CreatePreviewBloodPool(const FVector& Location, float Size, UMaterialInterface* Material)
{
if (!World || !TargetActor)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot create blood pool: Invalid world or target actor"));
return nullptr;
}
// Create a decal component for the blood pool
TObjectPtr<UDecalComponent> BloodPoolComponent = NewObject<UDecalComponent>(TargetActor, TEXT("BloodPoolComponent"));
if (!BloodPoolComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create blood pool component"));
return nullptr;
}
// Register the component
BloodPoolComponent->RegisterComponent();
// Set the material
if (Material)
{
BloodPoolComponent->SetMaterial(0, Material);
}
else
{
// Use a default material
UMaterialInterface* DefaultMaterial = LoadObject<UMaterialInterface>(nullptr, TEXT("/Engine/BasicShapes/BasicShapeMaterial.BasicShapeMaterial"));
if (DefaultMaterial)
{
BloodPoolComponent->SetMaterial(0, DefaultMaterial);
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to load default material"));
}
}
// Set the transform
BloodPoolComponent->SetWorldLocation(Location);
BloodPoolComponent->SetWorldRotation(FRotator(-90.0f, 0.0f, 0.0f));
BloodPoolComponent->DecalSize = FVector(Size, Size, 10.0f);
// Add to the preview components
PreviewDecalComponents.Add(BloodPoolComponent);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Created blood pool decal, location: %s, size: %.2f"),
*Location.ToString(), Size);
return BloodPoolComponent;
}
TObjectPtr<UStaticMeshComponent> UDismembermentPreviewManager::CreatePreviewOrgan(UStaticMesh* OrganMesh, UMaterialInterface* OrganMaterial, const FName& AttachBoneName, const FVector& RelativeLocation, const FRotator& RelativeRotation, const FVector& RelativeScale)
{
if (!World || !TargetActor || !OrganMesh)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot create organ: Invalid parameters"));
return nullptr;
}
// Create a static mesh component for the organ
TObjectPtr<UStaticMeshComponent> OrganComponent = NewObject<UStaticMeshComponent>(TargetActor, TEXT("OrganComponent"));
if (!OrganComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create organ component"));
return nullptr;
}
// Register the component
OrganComponent->RegisterComponent();
// Set the mesh
OrganComponent->SetStaticMesh(OrganMesh);
// Set the material
if (OrganMaterial)
{
OrganComponent->SetMaterial(0, OrganMaterial);
}
// Attach to bone if specified
if (TargetSkeletalMesh && !AttachBoneName.IsNone())
{
if (TargetSkeletalMesh->GetBoneIndex(AttachBoneName) != INDEX_NONE)
{
OrganComponent->AttachToComponent(TargetSkeletalMesh, FAttachmentTransformRules::KeepRelativeTransform, AttachBoneName);
OrganComponent->SetRelativeLocationAndRotation(RelativeLocation, RelativeRotation);
OrganComponent->SetRelativeScale3D(RelativeScale);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Organ attached to bone: %s"), *AttachBoneName.ToString());
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Bone not found: %s, attaching to actor root component"), *AttachBoneName.ToString());
// Set the transform
OrganComponent->SetWorldLocationAndRotation(
TargetActor->GetActorLocation() + RelativeLocation,
TargetActor->GetActorRotation() + RelativeRotation);
OrganComponent->SetWorldScale3D(RelativeScale);
}
}
else
{
// Set the transform
OrganComponent->SetWorldLocationAndRotation(
TargetActor->GetActorLocation() + RelativeLocation,
TargetActor->GetActorRotation() + RelativeRotation);
OrganComponent->SetWorldScale3D(RelativeScale);
}
// Add to the preview components
PreviewStaticMeshComponents.Add(OrganComponent);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Created organ component, relative location: %s"), *RelativeLocation.ToString());
return OrganComponent;
}
TObjectPtr<UDecalComponent> UDismembermentPreviewManager::CreatePreviewWound(const FVector& Location, float Size, UMaterialInterface* Material)
{
if (!World || !TargetActor)
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Cannot create wound: Invalid world or target actor"));
return nullptr;
}
// Create a decal component for the wound
TObjectPtr<UDecalComponent> WoundComponent = NewObject<UDecalComponent>(TargetActor, TEXT("WoundComponent"));
if (!WoundComponent)
{
UE_LOG(LogFLESHPreview, Error, TEXT("Failed to create wound component"));
return nullptr;
}
// Register the component
WoundComponent->RegisterComponent();
// Set the material
if (Material)
{
WoundComponent->SetMaterial(0, Material);
}
else
{
// Use a default material
UMaterialInterface* DefaultMaterial = LoadObject<UMaterialInterface>(nullptr, TEXT("/Engine/BasicShapes/BasicShapeMaterial.BasicShapeMaterial"));
if (DefaultMaterial)
{
WoundComponent->SetMaterial(0, DefaultMaterial);
}
else
{
UE_LOG(LogFLESHPreview, Warning, TEXT("Failed to load default material"));
}
}
// Set the transform
WoundComponent->SetWorldLocation(Location);
WoundComponent->SetWorldRotation(FRotator(-90.0f, 0.0f, 0.0f));
WoundComponent->DecalSize = FVector(Size, Size, 10.0f);
// Add to the preview components
PreviewDecalComponents.Add(WoundComponent);
UE_LOG(LogFLESHPreview, Verbose, TEXT("Created wound decal, location: %s, size: %.2f"),
*Location.ToString(), Size);
return WoundComponent;
}
void UDismembermentPreviewManager::ClearPreviewComponents()
{
// Destroy all preview components
for (TObjectPtr<UNiagaraComponent> Component : PreviewNiagaraComponents)
{
if (Component)
{
Component->DestroyComponent();
}
}
PreviewNiagaraComponents.Empty();
UE_LOG(LogFLESHPreview, Verbose, TEXT("Cleared %d Niagara components"), PreviewNiagaraComponents.Num());
for (TObjectPtr<UDecalComponent> Component : PreviewDecalComponents)
{
if (Component)
{
Component->DestroyComponent();
}
}
PreviewDecalComponents.Empty();
UE_LOG(LogFLESHPreview, Verbose, TEXT("Cleared %d decal components"), PreviewDecalComponents.Num());
for (TObjectPtr<UStaticMeshComponent> Component : PreviewStaticMeshComponents)
{
if (Component)
{
Component->DestroyComponent();
}
}
PreviewStaticMeshComponents.Empty();
UE_LOG(LogFLESHPreview, Verbose, TEXT("Cleared %d static mesh components"), PreviewStaticMeshComponents.Num());
// Clear the cut plane mesh
if (PreviewCutPlaneMesh)
{
PreviewCutPlaneMesh->DestroyComponent();
PreviewCutPlaneMesh = nullptr;
}
}

View File

@@ -1,378 +0,0 @@
#include "DismembermentGraph/SDismembermentGraphNode.h"
#include "DismembermentGraph/DismembermentGraphNode.h"
#include "GraphEditorSettings.h"
#include "SGraphPin.h"
#include "SlateOptMacros.h"
#include "Widgets/SBoxPanel.h"
#include "Widgets/Text/SInlineEditableTextBlock.h"
#include "Widgets/Images/SImage.h"
#include "Styling/AppStyle.h"
BEGIN_SLATE_FUNCTION_BUILD_OPTIMIZATION
void SDismembermentGraphNode::Construct(const FArguments& InArgs, UEdGraphNode* InNode)
{
GraphNode = InNode;
UpdateGraphNode();
bIsHovered = false;
}
void SDismembermentGraphNode::UpdateGraphNode()
{
// Clear the widget
ContentScale.Bind(this, &SGraphNode::GetContentScale);
LeftNodeBox.Reset();
RightNodeBox.Reset();
// OutputPinBox.Reset(); // Comment out this line because OutputPinBox is not defined
// Setup the node title
TSharedPtr<SNodeTitle> NodeTitle = SNew(SNodeTitle, GraphNode);
// Create the node body
this->ContentScale.Bind(this, &SGraphNode::GetContentScale);
this->GetOrAddSlot(ENodeZone::Center)
.HAlign(HAlign_Center)
.VAlign(VAlign_Center)
[
SNew(SBorder)
.BorderImage(FAppStyle::GetBrush("Graph.StateNode.Body"))
.BorderBackgroundColor(this, &SDismembermentGraphNode::GetNodeColor)
.HAlign(HAlign_Fill)
.VAlign(VAlign_Fill)
.Padding(0.0f)
[
SNew(SOverlay)
// Main node body
+ SOverlay::Slot()
.HAlign(HAlign_Fill)
.VAlign(VAlign_Fill)
[
SNew(SVerticalBox)
// Title bar
+ SVerticalBox::Slot()
.AutoHeight()
[
SNew(SBorder)
.BorderImage(FAppStyle::GetBrush("Graph.StateNode.ColorSpill"))
.BorderBackgroundColor(this, &SDismembermentGraphNode::GetNodeTitleColor)
.HAlign(HAlign_Fill)
.VAlign(VAlign_Center)
.Padding(FMargin(10.0f, 5.0f))
[
SNew(SHorizontalBox)
// Node title
+ SHorizontalBox::Slot()
.AutoWidth()
[
SNew(STextBlock)
.Text(this, &SDismembermentGraphNode::GetNodeTitle)
.TextStyle(FAppStyle::Get(), "Graph.StateNode.NodeTitle")
.Margin(FMargin(0.0f, 0.0f, 4.0f, 0.0f))
]
// Node category
+ SHorizontalBox::Slot()
.AutoWidth()
[
SNew(STextBlock)
.Text(this, &SDismembermentGraphNode::GetNodeCategory)
.TextStyle(FAppStyle::Get(), "Graph.StateNode.NodeTitle")
.ColorAndOpacity(FLinearColor(0.8f, 0.8f, 0.8f))
.Margin(FMargin(4.0f, 0.0f, 0.0f, 0.0f))
]
]
]
// Node content
+ SVerticalBox::Slot()
.Padding(0.0f)
.AutoHeight()
[
SNew(SBorder)
.BorderImage(FAppStyle::GetBrush("NoBorder"))
.HAlign(HAlign_Fill)
.VAlign(VAlign_Fill)
.Padding(FMargin(10.0f, 0.0f))
[
SNew(SVerticalBox)
// Node description
+ SVerticalBox::Slot()
.AutoHeight()
.Padding(FMargin(0.0f, 4.0f))
[
SNew(STextBlock)
.Text(this, &SDismembermentGraphNode::GetNodeDescription)
.TextStyle(FAppStyle::Get(), "Graph.StateNode.Description")
.WrapTextAt(200.0f)
]
// Node preview
+ SVerticalBox::Slot()
.AutoHeight()
.Padding(FMargin(0.0f, 4.0f))
[
GetNodePreviewWidget()
]
]
]
// Input pins
+ SVerticalBox::Slot()
.AutoHeight()
[
SAssignNew(LeftNodeBox, SVerticalBox)
]
// Output pins
+ SVerticalBox::Slot()
.AutoHeight()
[
SAssignNew(RightNodeBox, SVerticalBox)
]
]
]
];
// Create all the pins
CreatePinWidgets();
}
void SDismembermentGraphNode::CreatePinWidgets()
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return;
}
// Create the input pins
for (int32 PinIndex = 0; PinIndex < DismembermentNode->Pins.Num(); PinIndex++)
{
UEdGraphPin* Pin = DismembermentNode->Pins[PinIndex];
if (!Pin->bHidden)
{
TSharedPtr<SGraphPin> NewPin = SNew(SGraphPin, Pin);
AddPin(NewPin.ToSharedRef());
}
}
}
void SDismembermentGraphNode::AddPin(const TSharedRef<SGraphPin>& PinToAdd)
{
PinToAdd->SetOwner(SharedThis(this));
const UEdGraphPin* PinObj = PinToAdd->GetPinObj();
const bool bAdvancedParameter = PinObj && PinObj->bAdvancedView;
if (bAdvancedParameter)
{
PinToAdd->SetVisibility(TAttribute<EVisibility>(PinToAdd, &SGraphPin::IsPinVisibleAsAdvanced));
}
if (PinToAdd->GetDirection() == EGPD_Input)
{
LeftNodeBox->AddSlot()
.AutoHeight()
.HAlign(HAlign_Left)
.VAlign(VAlign_Center)
.Padding(10.0f, 4.0f)
[
PinToAdd
];
InputPins.Add(PinToAdd);
}
else // EGPD_Output
{
RightNodeBox->AddSlot()
.AutoHeight()
.HAlign(HAlign_Right)
.VAlign(VAlign_Center)
.Padding(10.0f, 4.0f)
[
PinToAdd
];
OutputPins.Add(PinToAdd);
}
}
TSharedPtr<SToolTip> SDismembermentGraphNode::GetComplexTooltip()
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return nullptr;
}
return SNew(SToolTip)
[
SNew(SVerticalBox)
+ SVerticalBox::Slot()
.AutoHeight()
.Padding(FMargin(0.0f, 2.0f))
[
SNew(STextBlock)
.Text(DismembermentNode->GetNodeTitle(ENodeTitleType::FullTitle))
.Font(FCoreStyle::GetDefaultFontStyle("Bold", 12))
]
+ SVerticalBox::Slot()
.AutoHeight()
.Padding(FMargin(0.0f, 2.0f))
[
SNew(STextBlock)
.Text(DismembermentNode->GetTooltipText())
.Font(FCoreStyle::GetDefaultFontStyle("Regular", 10))
]
];
}
FReply SDismembermentGraphNode::OnMouseButtonDown(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent)
{
return FReply::Handled().DetectDrag(SharedThis(this), EKeys::LeftMouseButton);
}
FReply SDismembermentGraphNode::OnMouseButtonUp(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent)
{
return FReply::Handled();
}
FReply SDismembermentGraphNode::OnMouseMove(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent)
{
return FReply::Unhandled();
}
void SDismembermentGraphNode::OnMouseEnter(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent)
{
bIsHovered = true;
SGraphNode::OnMouseEnter(MyGeometry, MouseEvent);
}
void SDismembermentGraphNode::OnMouseLeave(const FPointerEvent& MouseEvent)
{
bIsHovered = false;
SGraphNode::OnMouseLeave(MouseEvent);
}
UDismembermentGraphNode* SDismembermentGraphNode::GetDismembermentGraphNode() const
{
return Cast<UDismembermentGraphNode>(GraphNode);
}
TSharedRef<SWidget> SDismembermentGraphNode::GetNodeTitleWidget()
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return SNew(STextBlock).Text(NSLOCTEXT("SDismembermentGraphNode", "InvalidNode", "Invalid Node"));
}
return SNew(STextBlock)
.Text(DismembermentNode->GetNodeTitle(ENodeTitleType::FullTitle))
.TextStyle(FAppStyle::Get(), "Graph.StateNode.NodeTitle");
}
TSharedRef<SWidget> SDismembermentGraphNode::GetNodeBodyWidget()
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return SNew(STextBlock).Text(NSLOCTEXT("SDismembermentGraphNode", "InvalidNode", "Invalid Node"));
}
return SNew(STextBlock)
.Text(DismembermentNode->GetTooltipText())
.TextStyle(FAppStyle::Get(), "Graph.StateNode.Description")
.WrapTextAt(200.0f);
}
TSharedRef<SWidget> SDismembermentGraphNode::GetNodePreviewWidget()
{
// This can be customized for different node types to show a preview
return SNew(SBox)
.WidthOverride(100.0f)
.HeightOverride(100.0f)
.HAlign(HAlign_Center)
.VAlign(VAlign_Center)
[
SNew(SBorder)
.BorderImage(FAppStyle::GetBrush("Graph.StateNode.Body"))
.BorderBackgroundColor(FLinearColor(0.1f, 0.1f, 0.1f, 0.5f))
.HAlign(HAlign_Center)
.VAlign(VAlign_Center)
[
SNew(STextBlock)
.Text(NSLOCTEXT("SDismembermentGraphNode", "Preview", "Preview"))
.TextStyle(FAppStyle::Get(), "Graph.StateNode.Description")
]
];
}
FSlateColor SDismembermentGraphNode::GetNodeColor() const
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return FLinearColor::Black;
}
FLinearColor NodeColor = DismembermentNode->NodeTitleColor;
if (IsNodeSelected())
{
NodeColor = FLinearColor(1.0f, 0.5f, 0.0f);
}
else if (IsNodeHovered())
{
NodeColor = NodeColor * 1.2f;
}
return NodeColor;
}
FSlateColor SDismembermentGraphNode::GetNodeTitleColor() const
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return FLinearColor::Black;
}
return DismembermentNode->NodeTitleColor.LinearRGBToHSV();
}
FText SDismembermentGraphNode::GetNodeTitle() const
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return NSLOCTEXT("SDismembermentGraphNode", "InvalidNode", "Invalid Node");
}
return DismembermentNode->GetNodeTitle(ENodeTitleType::FullTitle);
}
FText SDismembermentGraphNode::GetNodeCategory() const
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return FText::GetEmpty();
}
return DismembermentNode->NodeCategory;
}
FText SDismembermentGraphNode::GetNodeDescription() const
{
UDismembermentGraphNode* DismembermentNode = GetDismembermentGraphNode();
if (!DismembermentNode)
{
return FText::GetEmpty();
}
return DismembermentNode->NodeDescription;
}
bool SDismembermentGraphNode::IsNodeSelected() const
{
return GraphNode && GraphNode->IsSelected();
}
bool SDismembermentGraphNode::IsNodeHovered() const
{
return bIsHovered;
}
END_SLATE_FUNCTION_BUILD_OPTIMIZATION

View File

@@ -1,439 +0,0 @@
#include "DismembermentGraph/SDismembermentPreviewViewport.h"
#include "DismembermentGraph/DismembermentPreviewManager.h"
#include "EditorViewportClient.h"
#include "SEditorViewport.h"
#include "PreviewScene.h"
#include "Components/SkeletalMeshComponent.h"
#include "Engine/SkeletalMesh.h"
#include "Engine/StaticMesh.h"
#include "AdvancedPreviewScene.h"
#include "AssetViewerSettings.h"
#include "EditorModeManager.h"
#include "EngineUtils.h"
#include "GameFramework/Actor.h"
#include "Engine/World.h"
// Preview actor class
class ADismembermentPreviewActor : public AActor
{
public:
ADismembermentPreviewActor(const FObjectInitializer& ObjectInitializer)
: AActor(ObjectInitializer)
{
// Create a skeletal mesh component
SkeletalMeshComponent = CreateDefaultSubobject<USkeletalMeshComponent>(TEXT("SkeletalMeshComponent"));
RootComponent = SkeletalMeshComponent;
}
// Set the skeletal mesh
void SetSkeletalMesh(USkeletalMesh* InSkeletalMesh)
{
if (SkeletalMeshComponent)
{
SkeletalMeshComponent->SetSkeletalMesh(InSkeletalMesh);
}
}
// Get the skeletal mesh component
USkeletalMeshComponent* GetSkeletalMeshComponent() const
{
return SkeletalMeshComponent;
}
private:
// The skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> SkeletalMeshComponent;
};
//////////////////////////////////////////////////////////////////////////
// SDismembermentPreviewViewport
void SDismembermentPreviewViewport::Construct(const FArguments& InArgs)
{
// Create the preview scene
PreviewScene = MakeShareable(new FAdvancedPreviewScene(FPreviewScene::ConstructionValues()));
// Set up the preview scene
UAssetViewerSettings* Settings = UAssetViewerSettings::Get();
const int32 ProfileIndex = Settings->Profiles.IsValidIndex(0) ? 0 : INDEX_NONE;
if (ProfileIndex != INDEX_NONE)
{
Settings->Profiles[ProfileIndex].bRotateLightingRig = false;
PreviewScene->SetLightDirection(FRotator(Settings->Profiles[ProfileIndex].LightingRigRotation, 0, 0));
// The following methods may not exist in UE5.5.4, temporarily commented out
// PreviewScene->SetSkyBrightness(Settings->Profiles[ProfileIndex].EnvironmentCubeMapBrightness);
// PreviewScene->SetLightColor(Settings->Profiles[ProfileIndex].LightColor);
// PreviewScene->SetLightIntensity(Settings->Profiles[ProfileIndex].LightBrightness);
// PreviewScene->SetEnvironmentCubeMap(Settings->Profiles[ProfileIndex].EnvironmentCubeMap);
}
// Create the preview actor
CreatePreviewActor();
// Call parent constructor
SEditorViewport::Construct(SEditorViewport::FArguments());
}
SDismembermentPreviewViewport::~SDismembermentPreviewViewport()
{
// Clean up the preview scene
if (PreviewScene.IsValid())
{
// Cannot remove Actor directly, need to remove the Actor's root component
if (PreviewActor && PreviewActor->GetRootComponent())
{
PreviewScene->RemoveComponent(PreviewActor->GetRootComponent());
}
PreviewScene.Reset();
}
// Clean up the preview actor
if (PreviewActor)
{
if (PreviewActor->GetWorld())
{
PreviewActor->Destroy();
}
PreviewActor = nullptr;
}
// Clean up the viewport client
ViewportClient.Reset();
}
void SDismembermentPreviewViewport::SetPreviewManager(UDismembermentPreviewManager* InPreviewManager)
{
PreviewManager = InPreviewManager;
// Update the viewport client
if (ViewportClient.IsValid())
{
ViewportClient->SetPreviewManager(PreviewManager);
}
// Update the preview actor
if (PreviewManager && PreviewActor)
{
PreviewManager->SetTargetActor(PreviewActor);
}
}
void SDismembermentPreviewViewport::SetPreviewSkeletalMesh(USkeletalMesh* InSkeletalMesh)
{
// Set the skeletal mesh on the preview actor
if (PreviewActor)
{
ADismembermentPreviewActor* PreviewActorCasted = Cast<ADismembermentPreviewActor>(PreviewActor);
if (PreviewActorCasted)
{
PreviewActorCasted->SetSkeletalMesh(InSkeletalMesh);
}
}
// Update the preview actor
UpdatePreviewActor();
}
AActor* SDismembermentPreviewViewport::GetPreviewActor() const
{
return PreviewActor;
}
void SDismembermentPreviewViewport::RefreshViewport()
{
// Invalidate the viewport
if (ViewportClient.IsValid())
{
ViewportClient->Invalidate();
}
}
TSharedRef<FEditorViewportClient> SDismembermentPreviewViewport::MakeEditorViewportClient()
{
// Create the viewport client
ViewportClient = MakeShareable(new SDismembermentPreviewViewportClient(PreviewScene.Get(), SharedThis(this)));
// Set the preview manager
ViewportClient->SetPreviewManager(PreviewManager);
// Set up the viewport client
ViewportClient->SetViewLocation(FVector(0.0f, 0.0f, 200.0f));
ViewportClient->SetViewRotation(FRotator(-20.0f, 0.0f, 0.0f));
ViewportClient->SetViewLocationForOrbiting(FVector(0.0f, 0.0f, 0.0f));
ViewportClient->bSetListenerPosition = false;
ViewportClient->EngineShowFlags.SetPostProcessing(true);
ViewportClient->EngineShowFlags.SetLighting(true);
ViewportClient->EngineShowFlags.SetIndirectLightingCache(true);
ViewportClient->EngineShowFlags.SetSeparateTranslucency(true);
ViewportClient->EngineShowFlags.SetTemporalAA(true);
ViewportClient->EngineShowFlags.SetGrid(false);
ViewportClient->EngineShowFlags.SetAtmosphere(true);
ViewportClient->EngineShowFlags.SetSkeletalMeshes(true);
ViewportClient->EngineShowFlags.SetDecals(true);
ViewportClient->EngineShowFlags.SetParticles(true);
ViewportClient->EngineShowFlags.SetVolumetricFog(true);
ViewportClient->EngineShowFlags.SetDynamicShadows(true);
ViewportClient->EngineShowFlags.SetSkyLighting(true);
ViewportClient->EngineShowFlags.SetAmbientOcclusion(true);
ViewportClient->EngineShowFlags.SetScreenSpaceReflections(true);
ViewportClient->EngineShowFlags.SetAntiAliasing(true);
ViewportClient->EngineShowFlags.SetMotionBlur(false);
ViewportClient->EngineShowFlags.SetBounds(false);
ViewportClient->EngineShowFlags.SetCollision(false);
ViewportClient->EngineShowFlags.SetBSP(false);
ViewportClient->EngineShowFlags.SetFog(true);
ViewportClient->EngineShowFlags.SetStaticMeshes(true);
ViewportClient->EngineShowFlags.SetLandscape(true);
ViewportClient->EngineShowFlags.SetTranslucency(true);
ViewportClient->EngineShowFlags.SetInstancedFoliage(true);
ViewportClient->EngineShowFlags.SetInstancedGrass(true);
ViewportClient->EngineShowFlags.SetInstancedStaticMeshes(true);
ViewportClient->EngineShowFlags.SetInstancedFoliage(true);
ViewportClient->EngineShowFlags.SetInstancedGrass(true);
ViewportClient->EngineShowFlags.SetInstancedStaticMeshes(true);
ViewportClient->EngineShowFlags.SetSplines(true);
ViewportClient->EngineShowFlags.SetSelectionOutline(true);
ViewportClient->EngineShowFlags.SetMeshEdges(false);
ViewportClient->EngineShowFlags.SetVertexColors(false);
ViewportClient->EngineShowFlags.SetLightComplexity(false);
ViewportClient->EngineShowFlags.SetShaderComplexity(false);
// The following methods may not exist in UE5.5.4, temporarily commented out
// ViewportClient->EngineShowFlags.SetStaticMeshLODColoration(false);
ViewportClient->EngineShowFlags.SetLightMapDensity(false);
ViewportClient->EngineShowFlags.SetLightInfluences(false);
// ViewportClient->EngineShowFlags.SetOptimizeVizibility(false);
ViewportClient->EngineShowFlags.SetTextRender(true);
ViewportClient->EngineShowFlags.SetTestImage(false);
ViewportClient->EngineShowFlags.SetVisualizeLightCulling(false);
ViewportClient->EngineShowFlags.SetPrecomputedVisibility(true);
ViewportClient->EngineShowFlags.SetPrecomputedVisibilityCells(false);
ViewportClient->EngineShowFlags.SetVolumes(false);
ViewportClient->EngineShowFlags.SetGame(false);
ViewportClient->EngineShowFlags.SetBSPTriangles(false);
ViewportClient->EngineShowFlags.SetHitProxies(false);
ViewportClient->EngineShowFlags.SetGBufferHints(false);
ViewportClient->EngineShowFlags.SetVisualizeShadingModels(false);
// The following methods may not exist in UE5.5.4, temporarily commented out
// ViewportClient->EngineShowFlags.SetVisualizeAdaptiveDOF(false);
ViewportClient->EngineShowFlags.SetVisualizeSSR(false);
ViewportClient->EngineShowFlags.SetVisualizeSSS(false);
ViewportClient->EngineShowFlags.SetVolumetricLightmap(true);
ViewportClient->EngineShowFlags.SetVisualizeOutOfBoundsPixels(false);
ViewportClient->EngineShowFlags.SetHighResScreenshotMask(false);
ViewportClient->EngineShowFlags.SetHMDDistortion(false);
ViewportClient->EngineShowFlags.SetStereoRendering(false);
ViewportClient->EngineShowFlags.SetTonemapper(true);
ViewportClient->EngineShowFlags.SetLumenReflections(true);
ViewportClient->EngineShowFlags.SetLumenGlobalIllumination(true);
// ViewportClient->EngineShowFlags.SetVirtualShadowMaps(true);
// ViewportClient->EngineShowFlags.SetNanite(true);
return ViewportClient.ToSharedRef();
}
void SDismembermentPreviewViewport::OnFocusViewportToSelection()
{
// Focus the viewport on the preview actor
if (ViewportClient.IsValid() && PreviewActor)
{
ViewportClient->FocusViewportOnBox(PreviewActor->GetComponentsBoundingBox());
}
}
bool SDismembermentPreviewViewport::IsVisible() const
{
return SEditorViewport::IsVisible();
}
void SDismembermentPreviewViewport::CreatePreviewActor()
{
// Clean up any existing preview actor
if (PreviewActor)
{
if (PreviewActor->GetWorld())
{
PreviewActor->Destroy();
}
PreviewActor = nullptr;
}
// Create a new preview actor
if (PreviewScene.IsValid())
{
UWorld* World = PreviewScene->GetWorld();
if (World)
{
PreviewActor = World->SpawnActor<ADismembermentPreviewActor>();
if (PreviewActor)
{
// Add the actor to the preview scene
PreviewScene->AddComponent(PreviewActor->GetRootComponent(), FTransform::Identity);
// Update the preview manager
if (PreviewManager)
{
PreviewManager->SetTargetActor(PreviewActor);
}
}
}
}
}
void SDismembermentPreviewViewport::UpdatePreviewActor()
{
// Update the preview manager
if (PreviewManager && PreviewActor)
{
PreviewManager->SetTargetActor(PreviewActor);
}
// Refresh the viewport
RefreshViewport();
}
//////////////////////////////////////////////////////////////////////////
// SDismembermentPreviewViewportClient
SDismembermentPreviewViewportClient::SDismembermentPreviewViewportClient(FPreviewScene* InPreviewScene, const TWeakPtr<SDismembermentPreviewViewport>& InViewportWidget)
: FEditorViewportClient(nullptr, InPreviewScene, InViewportWidget)
, ViewportWidget(InViewportWidget)
, PreviewManager(nullptr)
{
// Set up the viewport client
SetRealtime(true);
// In UE5.5.4, these variables may no longer be members of FEditorViewportClient
// We only keep the necessary settings, others are commented out
bSetListenerPosition = false;
bShouldCheckHitProxy = true;
// The following settings may no longer be supported in UE5.5.4, temporarily commented out
/*
bShowGrid = false;
bDisableInput = false;
bAllowMatineePreview = false;
bUsingOrbitCamera = true;
bForceInitialFocus = true;
bShowBounds = false;
bShowBoundsActors = false;
bShowFloor = true;
bShowBoxes = false;
bShowWireframe = false;
bShowCollision = false;
bShowSockets = true;
bDrawAxes = false;
bShowNormals = false;
bShowTangents = false;
bShowBinormals = false;
bShowConstraints = false;
bShowCameras = false;
bShowLightRadius = false;
bShowLightVolumes = false;
bShowLightInfluences = false;
bShowLightFrustums = false;
bShowShadowFrustums = false;
bShowLightingOnlyOverlap = false;
bShowLightingVisualization = false;
bShowLightingStats = false;
bShowShadowDensity = false;
bShowPhysicalMaterialMasks = false;
bShowSpriteSockets = false;
bShowParticleSystemComponents = true;
bShowParticleSystems = true;
bShowLOD = false;
bShowHUD = false;
bShowDebugInfo = false;
bDrawPreviewShadowsInGame = false;
bEnableDirectLightMap = true;
bEnableIndirectLightMap = true;
// All bEnableColorize related variables are commented out
*/
// Continue to comment out more bEnableColorize related variables
/*
bEnableColorizeVolumetricLightmapIndirectIntensityGrayscale = false;
bEnableColorizeVolumetricLightmapIndirectIntensityColor = false;
bEnableColorizeVolumetricLightmapIndirectIntensityGrayscale = false;
bEnableColorizeVolumetricLightmapIndirectIntensityColor = false;
bEnableColorizeVolumetricLightmapIndirectIntensity = false;
bEnableColorizeVolumetricLightmapAmbientOcclusion = false;
bEnableColorizeVolumetricLightmapAmbientOcclusionGrayscale = false;
bEnableColorizeVolumetricLightmapAmbientOcclusionColor = false;
bEnableColorizeVolumetricLightmapAmbientOcclusionGrayscale = false;
bEnableColorizeVolumetricLightmapAmbientOcclusionColor = false;
bEnableColorizeVolumetricLightmapAmbientOcclusion = false;
*/
// Continue to comment out all remaining bEnableColorize related variables
/*
bEnableColorizeVolumetricLightmapSHBand0 = false;
bEnableColorizeVolumetricLightmapSHBand0Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand0Color = false;
bEnableColorizeVolumetricLightmapSHBand0Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand0Color = false;
bEnableColorizeVolumetricLightmapSHBand1 = false;
bEnableColorizeVolumetricLightmapSHBand1Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand1Color = false;
bEnableColorizeVolumetricLightmapSHBand1Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand1Color = false;
bEnableColorizeVolumetricLightmapSHBand1 = false;
bEnableColorizeVolumetricLightmapSHBand2 = false;
bEnableColorizeVolumetricLightmapSHBand2Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand2Color = false;
bEnableColorizeVolumetricLightmapSHBand2Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand2Color = false;
bEnableColorizeVolumetricLightmapSHBand2 = false;
bEnableColorizeVolumetricLightmapSHBand3 = false;
bEnableColorizeVolumetricLightmapSHBand3Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand3Color = false;
bEnableColorizeVolumetricLightmapSHBand3Grayscale = false;
bEnableColorizeVolumetricLightmapSHBand3Color = false;
bEnableColorizeVolumetricLightmapSHBand3 = false;
*/
}
SDismembermentPreviewViewportClient::~SDismembermentPreviewViewportClient()
{
// Clean up
PreviewManager = nullptr;
}
void SDismembermentPreviewViewportClient::Tick(float DeltaSeconds)
{
// Call parent tick
FEditorViewportClient::Tick(DeltaSeconds);
// Tick the preview manager
if (PreviewManager)
{
PreviewManager->Tick(DeltaSeconds);
}
}
void SDismembermentPreviewViewportClient::Draw(const FSceneView* View, FPrimitiveDrawInterface* PDI)
{
// Call parent draw
FEditorViewportClient::Draw(View, PDI);
// Draw preview elements
if (PreviewManager)
{
// TODO: Draw preview elements
}
}
void SDismembermentPreviewViewportClient::DrawCanvas(FViewport& InViewport, FSceneView& View, FCanvas& Canvas)
{
// Call parent draw canvas
FEditorViewportClient::DrawCanvas(InViewport, View, Canvas);
// Draw preview elements
if (PreviewManager)
{
// TODO: Draw preview elements
}
}
void SDismembermentPreviewViewportClient::SetPreviewManager(UDismembermentPreviewManager* InPreviewManager)
{
PreviewManager = InPreviewManager;
}

File diff suppressed because it is too large Load Diff

View File

@@ -4,7 +4,7 @@
void FFLESHEditorCommands::RegisterCommands()
{
UI_COMMAND(OpenFLESHEditor, "F.L.E.S.H", "Open F.L.E.S.H Dismemberment System Editor", EUserInterfaceActionType::Button, FInputChord());
UI_COMMAND(OpenFLESHEditor, "F.L.E.S.H Editor", "Open F.L.E.S.H Dismemberment System Editor", EUserInterfaceActionType::Button, FInputChord());
UI_COMMAND(OpenDismembermentGraphEditor, "Dismemberment Graph", "Open Dismemberment System Graph Editor", EUserInterfaceActionType::Button, FInputChord());
UI_COMMAND(OpenAnatomicalLayerEditor, "Anatomical Layer", "Open Anatomical Layer Editor", EUserInterfaceActionType::Button, FInputChord());
UI_COMMAND(OpenBooleanCutTool, "Boolean Cut", "Open Boolean Cut Tool", EUserInterfaceActionType::Button, FInputChord());

View File

@@ -81,54 +81,45 @@ void FFLESHEditorModule::OpenFLESHEditorCommand()
OpenFLESHEditor(EToolkitMode::Standalone, nullptr, nullptr);
}
void FFLESHEditorModule::OpenFLESHEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, UObject* ObjectToEdit)
void FFLESHEditorModule::OpenFLESHEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, TObjectPtr<UObject> ObjectToEdit)
{
// Add try-catch block to prevent crashes when opening editor
// Add try-catch block to prevent crashes when opening the editor
try
{
// Check if FLESH module is loaded
if (!FModuleManager::Get().IsModuleLoaded("FLESH"))
{
UE_LOG(LogTemp, Error, TEXT("Cannot open FLESH Editor: FLESH module is not loaded"));
UE_LOG(LogTemp, Error, TEXT("Failed to open FLESH Editor: FLESH module not loaded"));
return;
}
// If no object is provided, create a default object to edit
// If no object is provided, create a default object
if (ObjectToEdit == nullptr)
{
// Try to find or create a dismemberment graph asset to edit
UClass* DismembermentGraphClass = FindObject<UClass>(nullptr, TEXT("/Script/FLESH.DismembermentGraphAsset"));
if (DismembermentGraphClass)
// Create a basic UObject
ObjectToEdit = NewObject<UObject>(GetTransientPackage(), UObject::StaticClass(), TEXT("DefaultFLESHObject"));
if (ObjectToEdit == nullptr)
{
// Try to find an existing asset first
ObjectToEdit = FindObject<UObject>(nullptr, TEXT("DefaultDismembermentGraph"));
// If not found, create a temporary object
if (ObjectToEdit == nullptr)
{
ObjectToEdit = NewObject<UObject>(GetTransientPackage(), DismembermentGraphClass, TEXT("DefaultDismembermentGraph"));
ObjectToEdit->AddToRoot(); // Prevent garbage collection
}
}
else
{
// If we can't find the class, create a basic UObject
ObjectToEdit = NewObject<UObject>(GetTransientPackage(), UObject::StaticClass(), TEXT("DefaultFLESHObject"));
ObjectToEdit->AddToRoot(); // Prevent garbage collection
UE_LOG(LogTemp, Error, TEXT("Failed to create default object, cannot open FLESH Editor"));
return;
}
}
// Create a new FLESH editor
TSharedRef<FFLESHEditor> NewFLESHEditor(new FFLESHEditor());
NewFLESHEditor->InitFLESHEditor(Mode, InitToolkitHost, ObjectToEdit);
UE_LOG(LogTemp, Log, TEXT("FLESH Editor successfully opened"));
}
catch (const std::exception& e)
{
UE_LOG(LogTemp, Error, TEXT("Failed to open FLESH Editor: %s"), UTF8_TO_TCHAR(e.what()));
FMessageDialog::Open(EAppMsgType::Ok, FText::Format(LOCTEXT("OpenEditorError", "Failed to open FLESH Editor: {0}"), FText::FromString(UTF8_TO_TCHAR(e.what()))));
}
catch (...)
{
UE_LOG(LogTemp, Error, TEXT("Failed to open FLESH Editor with unknown exception"));
UE_LOG(LogTemp, Error, TEXT("Unknown exception occurred when opening FLESH Editor"));
FMessageDialog::Open(EAppMsgType::Ok, LOCTEXT("OpenEditorUnknownError", "Unknown exception occurred when opening FLESH Editor"));
}
}

View File

@@ -6,6 +6,7 @@
#include "SlateOptMacros.h"
#include "Styling/SlateStyle.h"
#include "Brushes/SlateImageBrush.h"
#include "Framework/Application/SlateApplication.h"
TSharedPtr<FSlateStyleSet> FFLESHEditorStyle::StyleInstance = nullptr;

View File

@@ -0,0 +1,150 @@
#include "FLESHGraph/FLESHCompiler.h"
#include "FLESHGraph/FLESHGraph.h"
#include "FLESHGraph/FLESHGraphNode.h"
#include "Logging/LogMacros.h"
// Define log category
DEFINE_LOG_CATEGORY_STATIC(LogFLESHCompiler, Log, All);
UFLESHCompiler::UFLESHCompiler()
{
// Initialize default values
SourceGraph = nullptr;
bCompilationSuccessful = false;
ErrorMessage = TEXT("");
}
void UFLESHCompiler::Initialize(UFLESHGraph* InGraph)
{
// Set source graph
SourceGraph = InGraph;
// Reset compilation status
bCompilationSuccessful = false;
ErrorMessage = TEXT("");
CompiledNodeData.Empty();
ExecutionOrder.Empty();
UE_LOG(LogFLESHCompiler, Log, TEXT("FLESH Compiler initialized with graph: %s"),
SourceGraph ? *SourceGraph->GetName() : TEXT("Invalid"));
}
bool UFLESHCompiler::Compile()
{
// Check if source graph is valid
if (!SourceGraph)
{
ErrorMessage = TEXT("Invalid source graph");
UE_LOG(LogFLESHCompiler, Error, TEXT("FLESH Compiler error: %s"), *ErrorMessage);
return false;
}
// Reset compilation data
CompiledNodeData.Empty();
ExecutionOrder.Empty();
// Validate graph
if (!ValidateGraph())
{
UE_LOG(LogFLESHCompiler, Error, TEXT("FLESH Compiler error: %s"), *ErrorMessage);
return false;
}
// Process all nodes in the graph
TArray<UFLESHGraphNode*> AllNodes;
// TODO: Get all nodes from graph
// Process each node
for (int32 NodeIndex = 0; NodeIndex < AllNodes.Num(); NodeIndex++)
{
if (!ProcessNode(AllNodes[NodeIndex], NodeIndex))
{
UE_LOG(LogFLESHCompiler, Error, TEXT("FLESH Compiler error: %s"), *ErrorMessage);
return false;
}
}
// Sort nodes in execution order
SortNodes();
// Set compilation status
bCompilationSuccessful = true;
UE_LOG(LogFLESHCompiler, Log, TEXT("FLESH Graph compiled successfully. Nodes: %d, Execution order: %d"),
CompiledNodeData.Num(), ExecutionOrder.Num());
return true;
}
TArray<FFLESHNodeData> UFLESHCompiler::GetCompiledNodeData() const
{
return CompiledNodeData;
}
TArray<int32> UFLESHCompiler::GetExecutionOrder() const
{
return ExecutionOrder;
}
bool UFLESHCompiler::IsCompilationSuccessful() const
{
return bCompilationSuccessful;
}
FString UFLESHCompiler::GetErrorMessage() const
{
return ErrorMessage;
}
bool UFLESHCompiler::ProcessNode(UFLESHGraphNode* Node, int32 NodeIndex)
{
// Check if node is valid
if (!Node)
{
ErrorMessage = FString::Printf(TEXT("Invalid node at index %d"), NodeIndex);
return false;
}
// Create node data
FFLESHNodeData NodeData;
NodeData.NodeName = FName(*Node->GetNodeTitle());
// TODO: Set node type and parameters
// Add node data to compiled data
CompiledNodeData.Add(NodeData);
return true;
}
void UFLESHCompiler::SortNodes()
{
// TODO: Implement topological sort to determine execution order
// For now, just add all nodes in order
for (int32 i = 0; i < CompiledNodeData.Num(); i++)
{
ExecutionOrder.Add(i);
}
}
bool UFLESHCompiler::ValidateGraph()
{
// TODO: Implement graph validation
// Check if source graph is valid
if (!SourceGraph)
{
ErrorMessage = TEXT("Source graph is null");
return false;
}
// Check if graph has at least one node
TArray<UFLESHGraphNode*> AllNodes = SourceGraph->GetAllNodes();
if (AllNodes.Num() == 0)
{
ErrorMessage = TEXT("Graph has no nodes");
return false;
}
return true;
}

View File

@@ -0,0 +1,195 @@
#include "FLESHGraph/FLESHExecutor.h"
#include "Engine/SkeletalMesh.h"
#include "Components/SkeletalMeshComponent.h"
#include "NiagaraSystem.h"
#include "NiagaraComponent.h"
#include "NiagaraFunctionLibrary.h"
#include "Components/DecalComponent.h"
#include "Kismet/GameplayStatics.h"
#include "PhysicalMaterials/PhysicalMaterial.h"
#include "Logging/LogMacros.h"
// Define log category
DEFINE_LOG_CATEGORY_STATIC(LogFLESHExecutor, Log, All);
UFLESHExecutor::UFLESHExecutor()
{
// Initialize default values
Compiler = nullptr;
TargetActor = nullptr;
TargetSkeletalMesh = nullptr;
// Create boolean cut tool
CutTool = CreateDefaultSubobject<UBooleanCutTool>(TEXT("CutTool"));
}
void UFLESHExecutor::Initialize(UFLESHCompiler* InCompiler)
{
// Set compiler reference
Compiler = InCompiler;
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH Executor initialized with compiler: %s"),
Compiler ? TEXT("Valid") : TEXT("Invalid"));
}
bool UFLESHExecutor::Execute(AActor* InTargetActor)
{
// Set target actor
TargetActor = InTargetActor;
// Find skeletal mesh component
if (!FindTargetSkeletalMesh())
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Cannot execute FLESH graph, skeletal mesh component not found"));
return false;
}
// Check if compiler is valid
if (!Compiler)
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Cannot execute FLESH graph, invalid compiler"));
return false;
}
// Check if compilation was successful
if (!Compiler->IsCompilationSuccessful())
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Cannot execute FLESH graph, compilation failed: %s"),
*Compiler->GetErrorMessage());
return false;
}
// Get execution order from compiler
TArray<int32> ExecutionOrder = Compiler->GetExecutionOrder();
// Get compiled node data
TArray<FFLESHNodeData> CompiledNodeData = Compiler->GetCompiledNodeData();
// Execute nodes in order
for (int32 NodeIndex : ExecutionOrder)
{
// Check if node index is valid
if (!CompiledNodeData.IsValidIndex(NodeIndex))
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Invalid node index in execution order: %d"), NodeIndex);
continue;
}
// Execute node
if (!ExecuteNode(CompiledNodeData[NodeIndex]))
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Failed to execute node: %s"),
*CompiledNodeData[NodeIndex].NodeName.ToString());
return false;
}
}
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Graph executed successfully on actor: %s"),
TargetActor ? *TargetActor->GetName() : TEXT("Invalid"));
return true;
}
void UFLESHExecutor::SetCutTool(UBooleanCutTool* InCutTool)
{
CutTool = InCutTool;
}
UBooleanCutTool* UFLESHExecutor::GetCutTool() const
{
return CutTool;
}
bool UFLESHExecutor::FindTargetSkeletalMesh()
{
// Check if target actor is valid
if (!TargetActor)
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Invalid target actor"));
return false;
}
// Find skeletal mesh component
TargetSkeletalMesh = TargetActor->FindComponentByClass<USkeletalMeshComponent>();
// Check if skeletal mesh component is valid
if (!TargetSkeletalMesh)
{
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Target actor does not have a skeletal mesh component"));
return false;
}
return true;
}
bool UFLESHExecutor::ExecuteNode(const FFLESHNodeData& NodeData)
{
// Execute node based on type
switch (NodeData.NodeType)
{
case EFLESHNodeType::Cut:
return ExecuteCutNode(NodeData);
case EFLESHNodeType::BloodEffect:
return ExecuteBloodEffectNode(NodeData);
case EFLESHNodeType::Physics:
return ExecutePhysicsNode(NodeData);
case EFLESHNodeType::Organ:
return ExecuteOrganNode(NodeData);
case EFLESHNodeType::Wound:
return ExecuteWoundNode(NodeData);
case EFLESHNodeType::BoneSelection:
return ExecuteBoneSelectionNode(NodeData);
default:
UE_LOG(LogFLESHExecutor, Warning, TEXT("FLESH: Unknown node type for node: %s"),
*NodeData.NodeName.ToString());
return false;
}
}
bool UFLESHExecutor::ExecuteCutNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement cut node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing cut node: %s"), *NodeData.NodeName.ToString());
return true;
}
bool UFLESHExecutor::ExecuteBloodEffectNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement blood effect node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing blood effect node: %s"), *NodeData.NodeName.ToString());
return true;
}
bool UFLESHExecutor::ExecutePhysicsNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement physics node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing physics node: %s"), *NodeData.NodeName.ToString());
return true;
}
bool UFLESHExecutor::ExecuteOrganNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement organ node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing organ node: %s"), *NodeData.NodeName.ToString());
return true;
}
bool UFLESHExecutor::ExecuteWoundNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement wound node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing wound node: %s"), *NodeData.NodeName.ToString());
return true;
}
bool UFLESHExecutor::ExecuteBoneSelectionNode(const FFLESHNodeData& NodeData)
{
// TODO: Implement bone selection node execution
UE_LOG(LogFLESHExecutor, Log, TEXT("FLESH: Executing bone selection node: %s"), *NodeData.NodeName.ToString());
return true;
}

View File

@@ -0,0 +1,230 @@
#include "FLESHGraph/FLESHGraph.h"
#include "FLESHGraph/FLESHGraphNode.h"
#include "Logging/LogMacros.h"
// Define log category
DEFINE_LOG_CATEGORY_STATIC(LogFLESHGraph, Log, All);
UFLESHGraph::UFLESHGraph()
{
// Initialize default values
RootNode = nullptr;
}
void UFLESHGraph::Initialize()
{
// Clear graph
ClearGraph();
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH graph initialized"));
}
UFLESHGraphNode* UFLESHGraph::AddNode(TSubclassOf<UFLESHGraphNode> NodeClass, const FVector2D& Position)
{
// Check if node class is valid
if (!NodeClass)
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Invalid node class"));
return nullptr;
}
// Create new node
UFLESHGraphNode* NewNode = NewObject<UFLESHGraphNode>(this, NodeClass);
if (!NewNode)
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Failed to create node"));
return nullptr;
}
// Set node position
NewNode->SetNodePosition(Position);
// Add to node list
Nodes.Add(NewNode);
// If it's the first node, set as root node
if (Nodes.Num() == 1)
{
RootNode = NewNode;
}
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Added new node: %s"), *NewNode->GetNodeTitle());
return NewNode;
}
bool UFLESHGraph::RemoveNode(UFLESHGraphNode* Node)
{
// Check if node is valid
if (!Node)
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Trying to remove invalid node"));
return false;
}
// Disconnect from other nodes
TArray<UFLESHGraphNode*> InputNodes = Node->GetInputNodes();
TArray<UFLESHGraphNode*> OutputNodes = Node->GetOutputNodes();
for (UFLESHGraphNode* InputNode : InputNodes)
{
DisconnectNodes(InputNode, Node);
}
for (UFLESHGraphNode* OutputNode : OutputNodes)
{
DisconnectNodes(Node, OutputNode);
}
// If it's the root node, reset root node
if (Node == RootNode)
{
RootNode = nullptr;
// If there are other nodes, choose the first one as the new root node
if (Nodes.Num() > 1)
{
for (UFLESHGraphNode* OtherNode : Nodes)
{
if (OtherNode != Node)
{
RootNode = OtherNode;
break;
}
}
}
}
// Remove from node list
bool bRemoved = Nodes.Remove(Node) > 0;
if (bRemoved)
{
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Removed node: %s"), *Node->GetNodeTitle());
}
else
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Node is not in graph: %s"), *Node->GetNodeTitle());
}
return bRemoved;
}
bool UFLESHGraph::ConnectNodes(UFLESHGraphNode* SourceNode, UFLESHGraphNode* TargetNode)
{
// Check if nodes are valid
if (!SourceNode || !TargetNode)
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Trying to connect invalid nodes"));
return false;
}
// Add connection
bool bSourceAdded = SourceNode->AddOutputNode(TargetNode);
bool bTargetAdded = TargetNode->AddInputNode(SourceNode);
if (bSourceAdded && bTargetAdded)
{
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Connected nodes: %s -> %s"),
*SourceNode->GetNodeTitle(), *TargetNode->GetNodeTitle());
return true;
}
else
{
// If adding failed, rollback changes
if (bSourceAdded)
{
SourceNode->RemoveOutputNode(TargetNode);
}
if (bTargetAdded)
{
TargetNode->RemoveInputNode(SourceNode);
}
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Connecting nodes failed: %s -> %s"),
*SourceNode->GetNodeTitle(), *TargetNode->GetNodeTitle());
return false;
}
}
bool UFLESHGraph::DisconnectNodes(UFLESHGraphNode* SourceNode, UFLESHGraphNode* TargetNode)
{
// Check if nodes are valid
if (!SourceNode || !TargetNode)
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Trying to disconnect invalid nodes"));
return false;
}
// Remove connection
bool bSourceRemoved = SourceNode->RemoveOutputNode(TargetNode);
bool bTargetRemoved = TargetNode->RemoveInputNode(SourceNode);
if (bSourceRemoved && bTargetRemoved)
{
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Disconnected nodes: %s -> %s"),
*SourceNode->GetNodeTitle(), *TargetNode->GetNodeTitle());
return true;
}
else
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Disconnecting nodes failed: %s -> %s"),
*SourceNode->GetNodeTitle(), *TargetNode->GetNodeTitle());
return false;
}
}
TArray<UFLESHGraphNode*> UFLESHGraph::GetAllNodes() const
{
return Nodes;
}
UFLESHGraphNode* UFLESHGraph::GetRootNode() const
{
return RootNode;
}
void UFLESHGraph::SetRootNode(UFLESHGraphNode* InRootNode)
{
// Check if node is in graph
if (InRootNode && Nodes.Contains(InRootNode))
{
RootNode = InRootNode;
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Set new root node: %s"), *RootNode->GetNodeTitle());
}
else if (!InRootNode)
{
RootNode = nullptr;
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Clear root node"));
}
else
{
UE_LOG(LogFLESHGraph, Warning, TEXT("FLESH: Trying to set node not in graph as root node"));
}
}
void UFLESHGraph::ClearGraph()
{
// Clear node list
Nodes.Empty();
// Clear root node
RootNode = nullptr;
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Cleared graph"));
}
bool UFLESHGraph::SaveGraph()
{
// TODO: implement graph saving feature
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Graph saving feature not implemented"));
return false;
}
bool UFLESHGraph::LoadGraph()
{
// TODO: implement graph loading feature
UE_LOG(LogFLESHGraph, Log, TEXT("FLESH: Graph loading feature not implemented"));
return false;
}

View File

@@ -0,0 +1,164 @@
#include "FLESHGraph/FLESHGraphNode.h"
#include "Logging/LogMacros.h"
// 定义日志类别
DEFINE_LOG_CATEGORY_STATIC(LogFLESHGraphNode, Log, All);
UFLESHGraphNode::UFLESHGraphNode()
{
// 初始化默认值
NodeTitle = TEXT("FLESH节点");
NodeType = EFLESHNodeType::None;
NodeColor = FLinearColor(0.5f, 0.5f, 0.5f);
NodePosition = FVector2D::ZeroVector;
}
FString UFLESHGraphNode::GetNodeTitle() const
{
return NodeTitle;
}
EFLESHNodeType UFLESHGraphNode::GetNodeType() const
{
return NodeType;
}
FLinearColor UFLESHGraphNode::GetNodeColor() const
{
return NodeColor;
}
FVector2D UFLESHGraphNode::GetNodePosition() const
{
return NodePosition;
}
void UFLESHGraphNode::SetNodePosition(const FVector2D& InPosition)
{
NodePosition = InPosition;
}
TArray<UFLESHGraphNode*> UFLESHGraphNode::GetInputNodes() const
{
return InputNodes;
}
TArray<UFLESHGraphNode*> UFLESHGraphNode::GetOutputNodes() const
{
return OutputNodes;
}
bool UFLESHGraphNode::AddInputNode(UFLESHGraphNode* Node)
{
// 检查节点是否有效
if (!Node)
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 尝试添加无效的输入节点"));
return false;
}
// 检查节点是否已经在输入列表中
if (InputNodes.Contains(Node))
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 节点已经在输入列表中: %s"), *Node->GetNodeTitle());
return false;
}
// 添加到输入列表
InputNodes.Add(Node);
UE_LOG(LogFLESHGraphNode, Log, TEXT("FLESH: 添加了输入节点: %s -> %s"), *Node->GetNodeTitle(), *GetNodeTitle());
return true;
}
bool UFLESHGraphNode::AddOutputNode(UFLESHGraphNode* Node)
{
// 检查节点是否有效
if (!Node)
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 尝试添加无效的输出节点"));
return false;
}
// 检查节点是否已经在输出列表中
if (OutputNodes.Contains(Node))
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 节点已经在输出列表中: %s"), *Node->GetNodeTitle());
return false;
}
// 添加到输出列表
OutputNodes.Add(Node);
UE_LOG(LogFLESHGraphNode, Log, TEXT("FLESH: 添加了输出节点: %s -> %s"), *GetNodeTitle(), *Node->GetNodeTitle());
return true;
}
bool UFLESHGraphNode::RemoveInputNode(UFLESHGraphNode* Node)
{
// 检查节点是否有效
if (!Node)
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 尝试移除无效的输入节点"));
return false;
}
// 从输入列表中移除
bool bRemoved = InputNodes.Remove(Node) > 0;
if (bRemoved)
{
UE_LOG(LogFLESHGraphNode, Log, TEXT("FLESH: 移除了输入节点: %s -> %s"), *Node->GetNodeTitle(), *GetNodeTitle());
}
else
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 节点不在输入列表中: %s"), *Node->GetNodeTitle());
}
return bRemoved;
}
bool UFLESHGraphNode::RemoveOutputNode(UFLESHGraphNode* Node)
{
// 检查节点是否有效
if (!Node)
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 尝试移除无效的输出节点"));
return false;
}
// 从输出列表中移除
bool bRemoved = OutputNodes.Remove(Node) > 0;
if (bRemoved)
{
UE_LOG(LogFLESHGraphNode, Log, TEXT("FLESH: 移除了输出节点: %s -> %s"), *GetNodeTitle(), *Node->GetNodeTitle());
}
else
{
UE_LOG(LogFLESHGraphNode, Warning, TEXT("FLESH: 节点不在输出列表中: %s"), *Node->GetNodeTitle());
}
return bRemoved;
}
bool UFLESHGraphNode::CompileNode(FFLESHNodeData& OutNodeData)
{
// 设置基本节点数据
OutNodeData.NodeName = FName(*GetNodeTitle());
OutNodeData.NodeType = GetNodeType();
// 设置连接的节点
OutNodeData.ConnectedNodes.Empty();
for (UFLESHGraphNode* OutputNode : OutputNodes)
{
// TODO: 获取节点索引
// OutNodeData.ConnectedNodes.Add(NodeIndex);
}
UE_LOG(LogFLESHGraphNode, Log, TEXT("FLESH: 编译了节点: %s"), *GetNodeTitle());
return true;
}

View File

@@ -4,7 +4,20 @@
#include "CanvasTypes.h"
#include "Engine/SkeletalMesh.h"
#include "Components/SkeletalMeshComponent.h"
#include "Components/DirectionalLightComponent.h"
#include "Components/SkyLightComponent.h"
#include "Slate/SceneViewport.h"
#include "PreviewScene.h"
#include "EditorViewportClient.h"
#include "EngineGlobals.h"
#include "Engine/Engine.h"
#include "Engine.h"
#include "CanvasTypes.h"
#include "SceneView.h"
#include "InputCoreTypes.h"
#include "Components/SplineComponent.h"
#include "EditorModeManager.h"
#include "UnrealWidget.h"
FFLESHViewportClient::FFLESHViewportClient(FFLESHEditor* InEditor)
: FEditorViewportClient(nullptr)
@@ -13,7 +26,7 @@ FFLESHViewportClient::FFLESHViewportClient(FFLESHEditor* InEditor)
, bShowWireframe(false)
, bShowBones(false)
{
// Create a valid viewport scene
// Create a valid preview scene
PreviewScene = MakeShareable(new FPreviewScene(FPreviewScene::ConstructionValues()));
// Set the scene for FEditorViewportClient - use constructor instead of SetPreviewScene
@@ -41,6 +54,19 @@ FFLESHViewportClient::FFLESHViewportClient(FFLESHEditor* InEditor)
// Set default render mode
SetViewMode(VMI_Lit);
// Set camera control options similar to asset editor
SetRealtime(true);
bSetListenerPosition = false;
// Enable standard editor camera controls
if (Widget)
{
Widget->SetSnapEnabled(true);
}
// Load and display objects from NodeTree
LoadNodesFromNodeTree();
}
FFLESHViewportClient::~FFLESHViewportClient()
@@ -52,6 +78,23 @@ void FFLESHViewportClient::Draw(const FSceneView* View, FPrimitiveDrawInterface*
{
FEditorViewportClient::Draw(View, PDI);
// Draw navigation widget (coordinate axes)
if (PDI)
{
// Draw coordinate system axes
const float AxisLength = 50.0f;
const float AxisThickness = 1.0f;
// Draw X axis (red)
PDI->DrawLine(FVector::ZeroVector, FVector(AxisLength, 0.0f, 0.0f), FLinearColor::Red, SDPG_Foreground, AxisThickness);
// Draw Y axis (green)
PDI->DrawLine(FVector::ZeroVector, FVector(0.0f, AxisLength, 0.0f), FLinearColor::Green, SDPG_Foreground, AxisThickness);
// Draw Z axis (blue)
PDI->DrawLine(FVector::ZeroVector, FVector(0.0f, 0.0f, AxisLength), FLinearColor::Blue, SDPG_Foreground, AxisThickness);
}
// Draw custom UI elements
if (Viewport)
{
@@ -111,7 +154,7 @@ bool FFLESHViewportClient::InputKey(const FInputKeyEventArgs& EventArgs)
else if (EventArgs.Key == EKeys::F)
{
// F key focuses on selected object
// TODO: Add logic to focus on the selected object
FocusOnSelectedNode();
bHandled = true;
}
}
@@ -134,6 +177,15 @@ bool FFLESHViewportClient::InputKey(FViewport* InViewport, int32 ControllerId, F
return InputKey(Args);
}
// This version of InputAxis is deprecated, but kept for compatibility
bool FFLESHViewportClient::InputAxis(FViewport* InViewport, int32 ControllerId, FKey Key, float Delta, float DeltaTime, int32 NumSamples, bool bGamepad)
{
// Create InputKeyEventArgs for the new API
FInputKeyEventArgs Args(InViewport, ControllerId, Key, IE_Axis);
Args.AmountDepressed = Delta;
return InputKey(Args);
}
void FFLESHViewportClient::ResetCamera()
{
// Reset camera position and rotation
@@ -173,3 +225,164 @@ void FFLESHViewportClient::ToggleBones()
// Invalidate view
Invalidate();
}
void FFLESHViewportClient::LoadNodesFromNodeTree()
{
if (!PreviewScene.IsValid() || !Editor)
{
return;
}
// Clear current preview scene components by creating a new one
PreviewScene = MakeShareable(new FPreviewScene(FPreviewScene::ConstructionValues()));
FEditorViewportClient::PreviewScene = PreviewScene.Get();
// Add a default light
UDirectionalLightComponent* DirectionalLight = NewObject<UDirectionalLightComponent>();
DirectionalLight->SetMobility(EComponentMobility::Movable);
DirectionalLight->SetIntensity(1.0f);
PreviewScene->AddComponent(DirectionalLight, FTransform(FRotator(-45.0f, 45.0f, 0.0f)));
// Add a skylight for ambient lighting
USkyLightComponent* SkyLight = NewObject<USkyLightComponent>();
SkyLight->SetMobility(EComponentMobility::Movable);
SkyLight->SourceType = ESkyLightSourceType::SLS_CapturedScene;
PreviewScene->AddComponent(SkyLight, FTransform::Identity);
// Add a second directional light from another angle
UDirectionalLightComponent* BackLight = NewObject<UDirectionalLightComponent>();
BackLight->SetMobility(EComponentMobility::Movable);
BackLight->SetIntensity(0.6f);
BackLight->SetLightColor(FLinearColor(0.8f, 0.8f, 1.0f)); // Slightly blue backlight
PreviewScene->AddComponent(BackLight, FTransform(FRotator(45.0f, -135.0f, 0.0f)));
// Get all nodes from NodeTree
const TArray<TSharedPtr<FVisceraNodeItem>>& NodeRoots = Editor->GetNodeTreeRoots();
// Recursively load all nodes
for (const TSharedPtr<FVisceraNodeItem>& RootNode : NodeRoots)
{
if (RootNode.IsValid())
{
LoadNodeRecursive(RootNode, nullptr);
}
}
// Update viewport
Invalidate();
}
void FFLESHViewportClient::LoadNodeRecursive(TSharedPtr<FVisceraNodeItem> Node, USceneComponent* ParentComponent)
{
if (!Node.IsValid() || !PreviewScene.IsValid())
{
return;
}
USceneComponent* NodeComponent = nullptr;
// Simplified node loading logic, use static mesh for all node types
UStaticMeshComponent* MeshComponent = NewObject<UStaticMeshComponent>();
// Choose different mesh and color based on node type
FString MeshPath;
FLinearColor Color;
if (Node->NodeType.Equals(TEXT("SoftBody")))
{
MeshPath = TEXT("/Engine/BasicShapes/Sphere.Sphere");
Color = FLinearColor(1.0f, 0.5f, 0.5f, 0.7f); // Translucent red
}
else if (Node->NodeType.Equals(TEXT("LineChain")))
{
MeshPath = TEXT("/Engine/BasicShapes/Cylinder.Cylinder");
Color = FLinearColor(0.5f, 0.5f, 1.0f, 0.7f); // Translucent blue
}
else if (Node->NodeType.Equals(TEXT("Plane")))
{
MeshPath = TEXT("/Engine/BasicShapes/Plane.Plane");
Color = FLinearColor(0.5f, 0.5f, 1.0f, 0.5f); // Translucent blue
}
else if (Node->NodeType.Equals(TEXT("Matrix")))
{
MeshPath = TEXT("/Engine/BasicShapes/Cube.Cube");
Color = FLinearColor(0.5f, 1.0f, 0.5f, 0.7f); // Translucent green
MeshComponent->SetWorldScale3D(FVector(0.25f, 0.25f, 0.25f)); // Scale down cube
}
else // Default to sphere
{
MeshPath = TEXT("/Engine/BasicShapes/Sphere.Sphere");
Color = FLinearColor(1.0f, 1.0f, 1.0f, 0.7f); // Translucent white
}
// Load static mesh
UStaticMesh* StaticMesh = LoadObject<UStaticMesh>(nullptr, *MeshPath);
if (StaticMesh)
{
MeshComponent->SetStaticMesh(StaticMesh);
// Set translucent material
UMaterial* Material = LoadObject<UMaterial>(nullptr, TEXT("/Engine/BasicShapes/BasicShapeMaterial.BasicShapeMaterial"));
if (Material)
{
UMaterialInstanceDynamic* DynamicMaterial = UMaterialInstanceDynamic::Create(Material, MeshComponent);
if (DynamicMaterial)
{
DynamicMaterial->SetVectorParameterValue(TEXT("Color"), Color);
MeshComponent->SetMaterial(0, DynamicMaterial);
}
}
}
// Add to preview scene
PreviewScene->AddComponent(MeshComponent, FTransform::Identity);
NodeComponent = MeshComponent;
// If parent component exists, set parent-child relationship
if (NodeComponent && ParentComponent)
{
NodeComponent->AttachToComponent(ParentComponent, FAttachmentTransformRules::KeepRelativeTransform);
}
// Recursively load child nodes
for (const TSharedPtr<FVisceraNodeItem>& ChildNode : Node->Children)
{
if (ChildNode.IsValid() && NodeComponent)
{
LoadNodeRecursive(ChildNode, NodeComponent);
}
}
}
void FFLESHViewportClient::UpdateVisibleNodes()
{
// Reload all nodes
LoadNodesFromNodeTree();
}
void FFLESHViewportClient::FocusOnSelectedNode()
{
if (!Editor)
{
return;
}
// Get currently selected node
TSharedPtr<FVisceraNodeItem> SelectedNode = Editor->GetSelectedNodeItem();
if (!SelectedNode.IsValid())
{
return;
}
// Position camera at the selected node's location
// Note: Here we use a default position since we don't have actual position information for the node
// In a real implementation, we should find the component for this node and get its position
FVector FocusLocation = FVector::ZeroVector;
// Set camera position and rotation
SetViewLocation(FocusLocation + FVector(0.0f, 100.0f, 0.0f));
SetViewRotation(FRotator(0.0f, -90.0f, 0.0f));
// Update view
Invalidate();
}

View File

@@ -1,135 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Toolkits/AssetEditorToolkit.h"
#include "EditorUndoClient.h"
#include "BooleanCutTool.h"
#include "AnatomicalLayerSystem.h"
class USkeletalMesh;
class SDockTab;
class IDetailsView;
class SBorder;
/**
* Dismemberment System Editor
* Provides real-time boolean cutting and multi-layer system editing functionality
* Allows users to create and edit anatomical layer structures for skeletal meshes
* Supports physics settings and effect previews
*/
class FDismembermentEditor : public FAssetEditorToolkit, public FEditorUndoClient
{
public:
/** Constructor */
FDismembermentEditor();
/** Destructor */
virtual ~FDismembermentEditor();
/**
* Initialize the dismemberment editor
* @param Mode - Toolkit mode
* @param InitToolkitHost - Toolkit host
* @param InSkeletalMesh - Skeletal mesh to edit
*/
void InitDismembermentEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, USkeletalMesh* InSkeletalMesh);
/** Get toolkit name */
virtual FName GetToolkitFName() const override;
/** Get base toolkit name */
virtual FText GetBaseToolkitName() const override;
/** Get world centric tab prefix */
virtual FString GetWorldCentricTabPrefix() const override;
/** Get world centric tab color scale */
virtual FLinearColor GetWorldCentricTabColorScale() const override;
/** Post undo handler */
virtual void PostUndo(bool bSuccess) override;
/** Post redo handler */
virtual void PostRedo(bool bSuccess) override;
/** Get current skeletal mesh being edited */
USkeletalMesh* GetSkeletalMesh() const { return SkeletalMesh; }
private:
/** Create editor layout */
void CreateEditorLayout();
/** Create editor toolbar */
void CreateEditorToolbar();
/** Register tab spawners */
virtual void RegisterTabSpawners(const TSharedRef<FTabManager>& InTabManager) override;
/** Unregister tab spawners */
virtual void UnregisterTabSpawners(const TSharedRef<FTabManager>& InTabManager) override;
/** Spawn viewport tab */
TSharedRef<SDockTab> SpawnTab_Viewport(const FSpawnTabArgs& Args);
/** Spawn details tab */
TSharedRef<SDockTab> SpawnTab_Details(const FSpawnTabArgs& Args);
/** Spawn layer system tab */
TSharedRef<SDockTab> SpawnTab_LayerSystem(const FSpawnTabArgs& Args);
/** Spawn physics settings tab */
TSharedRef<SDockTab> SpawnTab_PhysicsSettings(const FSpawnTabArgs& Args);
/** Spawn node tree tab */
TSharedRef<SDockTab> SpawnTab_NodeTree(const FSpawnTabArgs& Args);
/** Perform boolean cut operation */
void PerformBooleanCut();
/** Add new anatomical layer */
void AddNewLayer();
/** Save edits */
void SaveEdits();
/** Preview effects */
void PreviewEffects();
private:
/** Current skeletal mesh being edited */
USkeletalMesh* SkeletalMesh;
/** Viewport widget */
TSharedPtr<SBorder> ViewportWidget;
/** Details widget */
TSharedPtr<IDetailsView> DetailsWidget;
/** Layer system widget */
TSharedPtr<SBorder> LayerSystemWidget;
/** Physics settings widget */
TSharedPtr<SBorder> PhysicsSettingsWidget;
/** Boolean cut tool */
UBooleanCutTool* BooleanCutTool;
/** Anatomical layer system */
UAnatomicalLayerSystem* LayerSystem;
/** Current cut plane */
FCutPlane CurrentCutPlane;
/** Selected bone name for cutting */
FName SelectedBoneName;
/** Flag to create cap mesh */
bool bCreateCapMesh;
/** Tab ID constants */
static const FName ViewportTabId;
static const FName DetailsTabId;
static const FName LayerSystemTabId;
static const FName PhysicsSettingsTabId;
static const FName NodeTreeTabId;
};

View File

@@ -1,347 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "NiagaraSystem.h"
#include "DismembermentCompiler.generated.h"
class UDismembermentGraphNode;
class UDismembermentGraph;
/**
* Dismemberment node type enum
*/
UENUM(BlueprintType)
enum class EDismembermentNodeType : uint8
{
None UMETA(DisplayName = "None"),
Cut UMETA(DisplayName = "Cut"),
BloodEffect UMETA(DisplayName = "Blood Effect"),
Physics UMETA(DisplayName = "Physics"),
Organ UMETA(DisplayName = "Organ"),
Wound UMETA(DisplayName = "Wound"),
BoneSelection UMETA(DisplayName = "Bone Selection")
};
/**
* Dismemberment node data structure
*/
USTRUCT(BlueprintType)
struct FDismembermentNodeData
{
GENERATED_BODY()
// Node name
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
FName NodeName;
// Node type
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
EDismembermentNodeType NodeType;
// Node parameters
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, float> FloatParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, FVector> VectorParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, FRotator> RotatorParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, bool> BoolParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, FName> NameParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Dismemberment")
TMap<FName, TObjectPtr<UObject>> ObjectParameters;
// Constructor
FDismembermentNodeData()
: NodeType(EDismembermentNodeType::None)
{
}
// Get float parameter
float GetFloatParameter(const FName& ParamName, float DefaultValue = 0.0f) const
{
if (const float* Value = FloatParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
// Get vector parameter
FVector GetVectorParameter(const FName& ParamName, const FVector& DefaultValue = FVector::ZeroVector) const
{
if (const FVector* Value = VectorParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
// Get rotator parameter
FRotator GetRotatorParameter(const FName& ParamName, const FRotator& DefaultValue = FRotator::ZeroRotator) const
{
if (const FRotator* Value = RotatorParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
// Get bool parameter
bool GetBoolParameter(const FName& ParamName, bool DefaultValue = false) const
{
if (const bool* Value = BoolParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
// Get name parameter
FName GetNameParameter(const FName& ParamName, const FName& DefaultValue = NAME_None) const
{
if (const FName* Value = NameParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
// Get object parameter
TObjectPtr<UObject> GetObjectParameter(const FName& ParamName, TObjectPtr<UObject> DefaultValue = nullptr) const
{
if (const TObjectPtr<UObject>* Value = ObjectParameters.Find(ParamName))
{
return *Value;
}
return DefaultValue;
}
};
/**
* Compiled node data structure
*/
USTRUCT()
struct FCompiledNodeData
{
GENERATED_BODY()
// Node reference
UPROPERTY()
TObjectPtr<UDismembermentGraphNode> Node;
// Input nodes
UPROPERTY()
TArray<int32> InputNodeIndices;
// Output nodes
UPROPERTY()
TArray<int32> OutputNodeIndices;
// Execution order index
int32 ExecutionOrder;
// Constructor
FCompiledNodeData()
: Node(nullptr)
, ExecutionOrder(-1)
{
}
};
/**
* Dismemberment compiler class
* Compiles a dismemberment graph into executable logic
*/
UCLASS()
class FLESHEDITOR_API UDismembermentCompiler : public UObject
{
GENERATED_BODY()
public:
// Constructor
UDismembermentCompiler();
/**
* Compile a dismemberment graph
* @param InGraph - The graph to compile
* @return True if compilation was successful
*/
bool CompileGraph(UDismembermentGraph* InGraph);
/**
* Get the compiled node data
* @return Array of compiled node data
*/
const TArray<FCompiledNodeData>& GetCompiledNodeData() const { return CompiledNodeData; }
/**
* Get the execution order
* @param OutExecutionOrder - Array to fill with node indices in execution order
* @return True if execution order is valid
*/
bool GetExecutionOrder(TArray<int32>& OutExecutionOrder) const
{
if (ExecutionOrder.Num() == 0)
{
return false;
}
OutExecutionOrder = ExecutionOrder;
return true;
}
/**
* Get node data for a specific node index
* @param NodeIndex - Index of the node
* @param OutNodeData - Node data to fill
* @return True if node data is valid
*/
bool GetNodeData(int32 NodeIndex, FDismembermentNodeData& OutNodeData) const;
/**
* Add a bone selection
* @param BoneName - Name of the bone to select
*/
void AddBoneSelection(const FName& BoneName);
/**
* Add a cut operation
* @param Location - Location of the cut
* @param Direction - Direction of the cut
* @param Width - Width of the cut
* @param Depth - Depth of the cut
* @param Material - Material to use for the cut surface
*/
void AddCutOperation(const FVector& Location, const FVector& Direction, float Width, float Depth, TObjectPtr<UMaterialInterface> Material);
/**
* Add a blood effect
* @param Location - Location of the blood effect
* @param BloodEffect - Niagara system for the blood effect
* @param BloodAmount - Amount of blood
* @param BloodPressure - Blood pressure
* @param CreateBloodPool - Whether to create a blood pool
* @param BloodPoolSize - Size of the blood pool
* @param BloodPoolMaterial - Material for the blood pool
*/
void AddBloodEffect(const FVector& Location, TObjectPtr<UNiagaraSystem> BloodEffect, float BloodAmount, float BloodPressure, bool CreateBloodPool, float BloodPoolSize, TObjectPtr<UMaterialInterface> BloodPoolMaterial);
/**
* Add a physics simulation
* @param Mass - Mass of the object
* @param LinearDamping - Linear damping
* @param AngularDamping - Angular damping
* @param EnableGravity - Whether to enable gravity
* @param SimulatePhysics - Whether to simulate physics
* @param GenerateOverlapEvents - Whether to generate overlap events
* @param PhysicalMaterial - Physical material to use
* @param ImpulseForce - Force of the impulse
* @param ImpulseRadius - Radius of the impulse
*/
void AddPhysicsSimulation(float Mass, float LinearDamping, float AngularDamping, bool EnableGravity, bool SimulatePhysics, bool GenerateOverlapEvents, TObjectPtr<UPhysicalMaterial> PhysicalMaterial, float ImpulseForce, float ImpulseRadius);
/**
* Add an organ
* @param OrganMesh - Mesh for the organ
* @param OrganMaterial - Material for the organ
* @param AttachBoneName - Name of the bone to attach to
* @param RelativeLocation - Relative location
* @param RelativeRotation - Relative rotation
* @param RelativeScale - Relative scale
* @param SimulatePhysics - Whether to simulate physics
* @param DamageMultiplier - Damage multiplier
* @param IsCriticalOrgan - Whether this is a critical organ
* @param BloodAmount - Amount of blood
*/
void AddOrgan(TObjectPtr<UStaticMesh> OrganMesh, TObjectPtr<UMaterialInterface> OrganMaterial, const FName& AttachBoneName, const FVector& RelativeLocation, const FRotator& RelativeRotation, const FVector& RelativeScale, bool SimulatePhysics, float DamageMultiplier, bool IsCriticalOrgan, float BloodAmount);
/**
* Add a wound effect
* @param WoundSize - Size of the wound
* @param WoundDepth - Depth of the wound
* @param WoundMaterial - Material for the wound
* @param WoundEffect - Effect for the wound
* @param CreateDecal - Whether to create a decal
* @param DecalMaterial - Material for the decal
* @param DecalSize - Size of the decal
* @param DecalLifetime - Lifetime of the decal
* @param AffectBoneHealth - Whether to affect bone health
* @param BoneDamage - Amount of bone damage
*/
void AddWoundEffect(float WoundSize, float WoundDepth, TObjectPtr<UMaterialInterface> WoundMaterial, TObjectPtr<UNiagaraSystem> WoundEffect, bool CreateDecal, TObjectPtr<UMaterialInterface> DecalMaterial, float DecalSize, float DecalLifetime, bool AffectBoneHealth, float BoneDamage);
private:
// The graph being compiled
UPROPERTY()
TObjectPtr<UDismembermentGraph> Graph;
// Compiled node data
UPROPERTY()
TArray<FCompiledNodeData> CompiledNodeData;
// Execution order
UPROPERTY()
TArray<int32> ExecutionOrder;
// Bone selections
UPROPERTY()
TArray<FName> BoneSelections;
// Cut operations
UPROPERTY()
TArray<FTransform> CutOperations;
// Cut materials
UPROPERTY()
TArray<TObjectPtr<UMaterialInterface>> CutMaterials;
// Cut widths
UPROPERTY()
TArray<float> CutWidths;
// Cut depths
UPROPERTY()
TArray<float> CutDepths;
// Blood effects
UPROPERTY()
TArray<FTransform> BloodEffectTransforms;
// Blood effect systems
UPROPERTY()
TArray<TObjectPtr<UNiagaraSystem>> BloodEffectSystems;
// Blood amounts
UPROPERTY()
TArray<float> BloodAmounts;
// Blood pressures
UPROPERTY()
TArray<float> BloodPressures;
// Create blood pools
UPROPERTY()
TArray<bool> CreateBloodPools;
// Blood pool sizes
UPROPERTY()
TArray<float> BloodPoolSizes;
// Blood pool materials
UPROPERTY()
TArray<TObjectPtr<UMaterialInterface>> BloodPoolMaterials;
// Topological sort the nodes
bool TopologicalSort();
// Visit node for topological sort
void VisitNode(int32 NodeIndex, TArray<bool>& Visited, TArray<bool>& TempMark, TArray<int32>& SortedNodes, bool& bHasCycle);
};

View File

@@ -1,161 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "DismembermentCompiler.h"
#include "NiagaraSystem.h"
#include "BooleanCutTool.h"
#include "DismembermentExecutor.generated.h"
class AActor;
class USkeletalMeshComponent;
class UDismembermentCompiler;
/**
* Dismemberment executor class
* Executes a compiled dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentExecutor : public UObject
{
GENERATED_BODY()
public:
// Constructor
UDismembermentExecutor();
/**
* Initialize the executor with a compiler
* @param InCompiler - The compiler containing the compiled graph
*/
void Initialize(UDismembermentCompiler* InCompiler);
/**
* Execute the compiled graph on a target actor
* @param TargetActor - The actor to apply the dismemberment effects to
* @return True if execution was successful
*/
bool Execute(AActor* TargetActor);
/**
* Get the target actor
* @return The target actor
*/
AActor* GetTargetActor() const { return TargetActor; }
/**
* Get the target skeletal mesh component
* @return The target skeletal mesh component
*/
USkeletalMeshComponent* GetTargetSkeletalMesh() const { return TargetSkeletalMesh; }
/**
* Get the selected bones
* @return Array of selected bone names
*/
const TArray<FName>& GetSelectedBones() const { return SelectedBones; }
/**
* Add a bone to the selection
* @param BoneName - Name of the bone to add
*/
void AddSelectedBone(const FName& BoneName);
/**
* Apply a cut to the target
* @param Location - Location of the cut
* @param Direction - Direction of the cut
* @param Width - Width of the cut
* @param Depth - Depth of the cut
* @param Material - Material to use for the cut surface
* @return True if the cut was successful
*/
bool ApplyCut(const FVector& Location, const FVector& Direction, float Width, float Depth, UMaterialInterface* Material);
/**
* Spawn a blood effect
* @param Location - Location of the blood effect
* @param BloodEffect - Niagara system for the blood effect
* @param BloodAmount - Amount of blood
* @param BloodPressure - Blood pressure
* @param CreateBloodPool - Whether to create a blood pool
* @param BloodPoolSize - Size of the blood pool
* @param BloodPoolMaterial - Material for the blood pool
* @return True if the blood effect was created successfully
*/
bool SpawnBloodEffect(const FVector& Location, UNiagaraSystem* BloodEffect, float BloodAmount, float BloodPressure, bool CreateBloodPool, float BloodPoolSize, UMaterialInterface* BloodPoolMaterial);
/**
* Apply physics simulation
* @param Mass - Mass of the object
* @param LinearDamping - Linear damping
* @param AngularDamping - Angular damping
* @param EnableGravity - Whether to enable gravity
* @param SimulatePhysics - Whether to simulate physics
* @param GenerateOverlapEvents - Whether to generate overlap events
* @param PhysicalMaterial - Physical material to use
* @param ImpulseForce - Force of the impulse
* @param ImpulseRadius - Radius of the impulse
* @return True if the physics simulation was applied successfully
*/
bool ApplyPhysics(float Mass, float LinearDamping, float AngularDamping, bool EnableGravity, bool SimulatePhysics, bool GenerateOverlapEvents, UPhysicalMaterial* PhysicalMaterial, float ImpulseForce, float ImpulseRadius);
/**
* Spawn an organ
* @param OrganMesh - Mesh for the organ
* @param OrganMaterial - Material for the organ
* @param AttachBoneName - Name of the bone to attach to
* @param RelativeLocation - Relative location
* @param RelativeRotation - Relative rotation
* @param RelativeScale - Relative scale
* @param SimulatePhysics - Whether to simulate physics
* @param DamageMultiplier - Damage multiplier
* @param IsCriticalOrgan - Whether this is a critical organ
* @param BloodAmount - Amount of blood
* @return True if the organ was spawned successfully
*/
bool SpawnOrgan(UStaticMesh* OrganMesh, UMaterialInterface* OrganMaterial, const FName& AttachBoneName, const FVector& RelativeLocation, const FRotator& RelativeRotation, const FVector& RelativeScale, bool SimulatePhysics, float DamageMultiplier, bool IsCriticalOrgan, float BloodAmount);
/**
* Apply a wound effect
* @param WoundSize - Size of the wound
* @param WoundDepth - Depth of the wound
* @param WoundMaterial - Material for the wound
* @param WoundEffect - Effect for the wound
* @param CreateDecal - Whether to create a decal
* @param DecalMaterial - Material for the decal
* @param DecalSize - Size of the decal
* @param DecalLifetime - Lifetime of the decal
* @param AffectBoneHealth - Whether to affect bone health
* @param BoneDamage - Amount of bone damage
* @return True if the wound effect was applied successfully
*/
bool ApplyWoundEffect(float WoundSize, float WoundDepth, UMaterialInterface* WoundMaterial, UNiagaraSystem* WoundEffect, bool CreateDecal, UMaterialInterface* DecalMaterial, float DecalSize, float DecalLifetime, bool AffectBoneHealth, float BoneDamage);
private:
// The compiler containing the compiled graph
UPROPERTY()
TObjectPtr<UDismembermentCompiler> Compiler;
// The target actor
UPROPERTY()
TObjectPtr<AActor> TargetActor;
// The target skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> TargetSkeletalMesh;
// Selected bones
UPROPERTY()
TArray<FName> SelectedBones;
// Boolean cut tool for mesh cutting operations
UPROPERTY()
TObjectPtr<UBooleanCutTool> CutTool;
// Find the target skeletal mesh component
bool FindTargetSkeletalMesh();
// Execute a node
bool ExecuteNode(int32 NodeIndex);
};

View File

@@ -1,22 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "EdGraph/EdGraph.h"
#include "DismembermentGraph.generated.h"
/**
* Dismemberment graph for visual logic design
* Allows for node-based editing of dismemberment system logic
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraph : public UEdGraph
{
GENERATED_BODY()
public:
UDismembermentGraph();
// The asset that owns this graph
UPROPERTY()
TObjectPtr<class UDismembermentGraphAsset> OwningAsset;
};

View File

@@ -1,80 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Toolkits/AssetEditorToolkit.h"
#include "GraphEditor.h"
class UDismembermentGraphAsset;
class UDismembermentGraph;
class SDockTab;
/**
* Dismemberment graph editor
* Provides a Mutable-like node editor for dismemberment system logic
*/
class FLESHEDITOR_API FDismembermentGraphEditor : public FAssetEditorToolkit
{
public:
FDismembermentGraphEditor();
virtual ~FDismembermentGraphEditor();
// Initialize the editor
void InitDismembermentGraphEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, UDismembermentGraphAsset* InAsset);
// FAssetEditorToolkit interface
virtual void RegisterTabSpawners(const TSharedRef<FTabManager>& TabManager) override;
virtual void UnregisterTabSpawners(const TSharedRef<FTabManager>& TabManager) override;
virtual FName GetToolkitFName() const override;
virtual FText GetBaseToolkitName() const override;
virtual FString GetWorldCentricTabPrefix() const override;
virtual FLinearColor GetWorldCentricTabColorScale() const override;
// End of FAssetEditorToolkit interface
// Get the edited asset
UDismembermentGraphAsset* GetEditedAsset() const { return EditedAsset; }
// Get the graph editor widget
TSharedRef<SGraphEditor> GetGraphEditor() const { return GraphEditorWidget.ToSharedRef(); }
private:
// The asset being edited
UDismembermentGraphAsset* EditedAsset;
// The graph editor widget
TSharedPtr<SGraphEditor> GraphEditorWidget;
// Tab spawners
TSharedRef<SDockTab> SpawnTab_GraphCanvas(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_Properties(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_Palette(const FSpawnTabArgs& Args);
// Create graph editor widget
TSharedRef<SGraphEditor> CreateGraphEditorWidget();
// Graph editor commands
void CreateCommandList();
TSharedPtr<FUICommandList> GraphEditorCommands;
// Command handlers
void SelectAllNodes();
void DeleteSelectedNodes();
void CutSelectedNodes();
void CopySelectedNodes();
void PasteNodes();
void DuplicateSelectedNodes();
// Graph changed handler
void OnGraphChanged(const FEdGraphEditAction& Action);
// Node selection changed handler
void OnSelectedNodesChanged(const TSet<UObject*>& NewSelection);
// Compile the graph
void CompileGraph();
// Properties panel
TSharedPtr<class IDetailsView> PropertiesWidget;
// Node palette
TSharedPtr<class SDismembermentGraphPalette> PaletteWidget;
};

View File

@@ -1,22 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Factories/Factory.h"
#include "DismembermentGraphEditorFactory.generated.h"
/**
* Factory for creating dismemberment graph assets
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphEditorFactory : public UFactory
{
GENERATED_BODY()
public:
UDismembermentGraphEditorFactory();
// UFactory interface
virtual UObject* FactoryCreateNew(UClass* InClass, UObject* InParent, FName InName, EObjectFlags Flags, UObject* Context, FFeedbackContext* Warn) override;
virtual bool ShouldShowInNewMenu() const override;
// End of UFactory interface
};

View File

@@ -1,43 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "EdGraph/EdGraphNode.h"
#include "DismembermentGraphNode.generated.h"
/**
* Base class for all dismemberment graph nodes
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNode : public UEdGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNode();
// Node title color
UPROPERTY(EditAnywhere, Category = "Appearance")
FLinearColor NodeTitleColor;
// Node category
UPROPERTY(EditAnywhere, Category = "Category")
FText NodeCategory;
// Node description
UPROPERTY(EditAnywhere, Category = "Description")
FText NodeDescription;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
virtual FLinearColor GetNodeTitleColor() const override;
virtual FText GetTooltipText() const override;
virtual FText GetMenuCategory() const;
// End of UEdGraphNode interface
// Compile this node into executable logic
virtual void CompileNode(class FDismembermentCompiler* Compiler);
// Execute this node
virtual void ExecuteNode(class FDismembermentExecutor* Executor);
};

View File

@@ -1,47 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "NiagaraSystem.h"
#include "DismembermentGraphNodeBloodEffect.generated.h"
/**
* Node for creating blood effects in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodeBloodEffect : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodeBloodEffect();
// Blood effect parameters
UPROPERTY(EditAnywhere, Category = "Blood Effect")
TObjectPtr<UNiagaraSystem> BloodEffect;
UPROPERTY(EditAnywhere, Category = "Blood Effect")
float BloodAmount;
UPROPERTY(EditAnywhere, Category = "Blood Effect")
float BloodPressure;
UPROPERTY(EditAnywhere, Category = "Blood Effect")
bool bCreateBloodPool;
UPROPERTY(EditAnywhere, Category = "Blood Effect", meta = (EditCondition = "bCreateBloodPool"))
float BloodPoolSize;
UPROPERTY(EditAnywhere, Category = "Blood Effect", meta = (EditCondition = "bCreateBloodPool"))
TObjectPtr<UMaterialInterface> BloodPoolMaterial;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,40 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "DismembermentGraphNodeBoneSelect.generated.h"
/**
* Node for selecting bones in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodeBoneSelect : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodeBoneSelect();
// Bone selection parameters
UPROPERTY(EditAnywhere, Category = "Bone Selection")
TArray<FName> BoneNames;
UPROPERTY(EditAnywhere, Category = "Bone Selection")
bool bUseRegex;
UPROPERTY(EditAnywhere, Category = "Bone Selection", meta = (EditCondition = "bUseRegex"))
FString BoneNamePattern;
UPROPERTY(EditAnywhere, Category = "Bone Selection")
bool bIncludeChildren;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,40 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "DismembermentGraphNodeCut.generated.h"
/**
* Node for performing a cut operation in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodeCut : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodeCut();
// Cut parameters
UPROPERTY(EditAnywhere, Category = "Cut Parameters")
float CutWidth;
UPROPERTY(EditAnywhere, Category = "Cut Parameters")
float CutDepth;
UPROPERTY(EditAnywhere, Category = "Cut Parameters")
bool bUseCustomMaterial;
UPROPERTY(EditAnywhere, Category = "Cut Parameters", meta = (EditCondition = "bUseCustomMaterial"))
TObjectPtr<UMaterialInterface> CustomCutMaterial;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,51 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "EdGraphUtilities.h"
class UDismembermentGraphNode;
class SDismembermentGraphNode;
/**
* Dismemberment graph node factory
* Used to create visual representations of dismemberment graph nodes
*/
class FDismembermentGraphNodeFactory : public FGraphPanelNodeFactory
{
public:
// Constructor
FDismembermentGraphNodeFactory();
FDismembermentGraphNodeFactory(UClass* InNodeClass, const FText& InDisplayName, const FText& InTooltip);
// FGraphPanelNodeFactory interface
virtual TSharedPtr<SGraphNode> CreateNode(UEdGraphNode* Node) const override;
// End of interface
private:
// Node class
UClass* NodeClass;
// Display name
FText DisplayName;
// Tooltip
FText Tooltip;
};
/**
* Dismemberment schema action - New node
* Used to create new nodes in the context menu
*/
class FDismembermentSchemaAction_NewNode : public FEdGraphSchemaAction
{
public:
// Constructor
FDismembermentSchemaAction_NewNode(const FText& InNodeCategory, const FText& InMenuDesc, const FText& InToolTip, const int32 InGrouping);
// Perform action
virtual UEdGraphNode* PerformAction(UEdGraph* ParentGraph, UEdGraphPin* FromPin, const FVector2D Location, bool bSelectNewNode = true) override;
// Node class
TSubclassOf<UDismembermentGraphNode> NodeClass;
};

View File

@@ -1,58 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "DismembermentGraphNodeOrgan.generated.h"
/**
* Node for organ simulation in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodeOrgan : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodeOrgan();
// Organ parameters
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
TObjectPtr<UStaticMesh> OrganMesh;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
TObjectPtr<UMaterialInterface> OrganMaterial;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
FName AttachBoneName;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
FVector RelativeLocation;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
FRotator RelativeRotation;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
FVector RelativeScale;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
bool bSimulatePhysics;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
float DamageMultiplier;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
bool bIsCriticalOrgan;
UPROPERTY(EditAnywhere, Category = "Organ Parameters")
float BloodAmount;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,55 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "DismembermentGraphNodePhysics.generated.h"
/**
* Node for physics simulation in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodePhysics : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodePhysics();
// Physics parameters
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
float Mass;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
float LinearDamping;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
float AngularDamping;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
bool bEnableGravity;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
bool bSimulatePhysics;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
bool bGenerateOverlapEvents;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
TObjectPtr<UPhysicalMaterial> PhysicalMaterial;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
float ImpulseForce;
UPROPERTY(EditAnywhere, Category = "Physics Parameters")
float ImpulseRadius;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,59 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "DismembermentGraphNode.h"
#include "NiagaraSystem.h"
#include "DismembermentGraphNodeWound.generated.h"
/**
* Node for wound effects in the dismemberment graph
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphNodeWound : public UDismembermentGraphNode
{
GENERATED_BODY()
public:
UDismembermentGraphNodeWound();
// Wound parameters
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
float WoundSize;
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
float WoundDepth;
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
TObjectPtr<UMaterialInterface> WoundMaterial;
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
TObjectPtr<UNiagaraSystem> WoundEffect;
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
bool bCreateDecal;
UPROPERTY(EditAnywhere, Category = "Wound Parameters", meta = (EditCondition = "bCreateDecal"))
TObjectPtr<UMaterialInterface> DecalMaterial;
UPROPERTY(EditAnywhere, Category = "Wound Parameters", meta = (EditCondition = "bCreateDecal"))
float DecalSize;
UPROPERTY(EditAnywhere, Category = "Wound Parameters", meta = (EditCondition = "bCreateDecal"))
float DecalLifetime;
UPROPERTY(EditAnywhere, Category = "Wound Parameters")
bool bAffectBoneHealth;
UPROPERTY(EditAnywhere, Category = "Wound Parameters", meta = (EditCondition = "bAffectBoneHealth"))
float BoneDamage;
// UEdGraphNode interface
virtual void AllocateDefaultPins() override;
virtual FText GetNodeTitle(ENodeTitleType::Type TitleType) const override;
// End of UEdGraphNode interface
// UDismembermentGraphNode interface
virtual void CompileNode(class FDismembermentCompiler* Compiler) override;
virtual void ExecuteNode(class FDismembermentExecutor* Executor) override;
// End of UDismembermentGraphNode interface
};

View File

@@ -1,56 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Widgets/SCompoundWidget.h"
#include "Widgets/Views/STableRow.h"
#include "Widgets/Views/STreeView.h"
class FDismembermentGraphEditor;
/**
* Node category structure for the palette
*/
struct FDismembermentGraphNodeCategory
{
// Category name
FText CategoryName;
// Child nodes
TArray<TSharedPtr<FDismembermentGraphNodeCategory>> Children;
// Node classes in this category
TArray<UClass*> NodeClasses;
// Constructor
FDismembermentGraphNodeCategory(const FText& InCategoryName)
: CategoryName(InCategoryName)
{
}
};
/**
* Node palette widget for the dismemberment graph editor
* This is a stub class that will be implemented later
*/
class FLESHEDITOR_API SDismembermentGraphPalette : public SCompoundWidget
{
public:
SLATE_BEGIN_ARGS(SDismembermentGraphPalette) {}
SLATE_END_ARGS()
void Construct(const FArguments& InArgs, TSharedPtr<FDismembermentGraphEditor> InGraphEditor)
{
GraphEditor = InGraphEditor;
// Create a simple placeholder widget
ChildSlot
[
SNew(STextBlock)
.Text(FText::FromString("Dismemberment Graph Palette - Coming Soon"))
];
}
private:
// The graph editor that owns this palette
TWeakPtr<FDismembermentGraphEditor> GraphEditor;
};

View File

@@ -1,168 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "EdGraph/EdGraphSchema.h"
#include "DismembermentGraphSchema.generated.h"
class UDismembermentGraphNode;
/**
* Connection response
*/
USTRUCT()
struct FDismembermentGraphConnectionResponse
{
GENERATED_BODY()
// Response type
UPROPERTY()
int32 Response;
// Response text
UPROPERTY()
FText Message;
// Pin names that would be broken
UPROPERTY()
TArray<FText> BreakingPins;
// Constructor
FDismembermentGraphConnectionResponse()
: Response(0)
{
}
};
/**
* Connection response types
*/
struct FDismembermentGraphConnectionResponse_K2
{
enum Type
{
// No error
OK = 0,
// Generic error
ERROR_INCOMPATIBLE = 1,
// Disallowed pin connection
ERROR_DISALLOWED = 2,
// Self-connection not allowed
ERROR_SELF_CONNECTION = 3,
// Cycle not allowed
ERROR_CYCLE = 4
};
};
/**
* Pin type
*/
USTRUCT()
struct FDismembermentGraphPinType
{
GENERATED_BODY()
// Pin category
UPROPERTY()
FName PinCategory;
// Constructor
FDismembermentGraphPinType()
{
}
// Constructor with category
FDismembermentGraphPinType(const FName& InPinCategory)
: PinCategory(InPinCategory)
{
}
// Equality operator
bool operator==(const FDismembermentGraphPinType& Other) const
{
return PinCategory == Other.PinCategory;
}
// Inequality operator
bool operator!=(const FDismembermentGraphPinType& Other) const
{
return !(*this == Other);
}
};
/**
* Dismemberment graph schema
*/
UCLASS()
class FLESHEDITOR_API UDismembermentGraphSchema : public UEdGraphSchema
{
GENERATED_BODY()
public:
// Pin categories
static const FName PC_Exec;
static const FName PC_Bone;
static const FName PC_Cut;
static const FName PC_Blood;
static const FName PC_Physics;
static const FName PC_Organ;
static const FName PC_Wound;
// UEdGraphSchema interface
virtual void GetGraphContextActions(FGraphContextMenuBuilder& ContextMenuBuilder) const override;
virtual void GetContextMenuActions(UToolMenu* Menu, UGraphNodeContextMenuContext* Context) const override;
virtual const FPinConnectionResponse CanCreateConnection(const UEdGraphPin* A, const UEdGraphPin* B) const override;
virtual bool TryCreateConnection(UEdGraphPin* A, UEdGraphPin* B) const override;
virtual bool ShouldHidePinDefaultValue(UEdGraphPin* Pin) const override;
virtual FLinearColor GetPinTypeColor(const FEdGraphPinType& PinType) const override;
virtual void BreakNodeLinks(UEdGraphNode& TargetNode) const override;
virtual void BreakPinLinks(UEdGraphPin& TargetPin, bool bSendsNodeNotification) const override;
virtual void BreakSinglePinLink(UEdGraphPin* SourcePin, UEdGraphPin* TargetPin) const override;
virtual void DroppedAssetsOnGraph(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraph* Graph) const override;
virtual void DroppedAssetsOnNode(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraphNode* Node) const override;
virtual void DroppedAssetsOnPin(const TArray<FAssetData>& Assets, const FVector2D& GraphPosition, UEdGraphPin* Pin) const override;
virtual void GetAssetsNodeHoverMessage(const TArray<FAssetData>& Assets, const UEdGraphNode* HoverNode, FString& OutTooltipText, bool& OutOkIcon) const override;
virtual void GetAssetsPinHoverMessage(const TArray<FAssetData>& Assets, const UEdGraphPin* HoverPin, FString& OutTooltipText, bool& OutOkIcon) const override;
// End of UEdGraphSchema interface
/**
* Check if two pins can be connected
* @param PinA - First pin
* @param PinB - Second pin
* @param OutResponse - Connection response
* @return True if the pins can be connected
*/
bool CanConnectPins(const UEdGraphPin* PinA, const UEdGraphPin* PinB, FDismembermentGraphConnectionResponse& OutResponse) const;
/**
* Check if connecting two pins would create a cycle
* @param PinA - First pin
* @param PinB - Second pin
* @return True if connecting the pins would create a cycle
*/
bool WouldCreateCycle(const UEdGraphPin* PinA, const UEdGraphPin* PinB) const;
/**
* Get the pin type from a pin
* @param Pin - The pin to get the type from
* @return The pin type
*/
static FDismembermentGraphPinType GetPinType(const UEdGraphPin* Pin);
/**
* Get the pin type color
* @param PinType - The pin type
* @return The pin color
*/
static FLinearColor GetPinTypeColor(const FDismembermentGraphPinType& PinType);
/**
* Create a new node
* @param NodeClass - Class of the node to create
* @param ParentGraph - Graph to create the node in
* @param NodePosX - X position of the node
* @param NodePosY - Y position of the node
* @param bSelectNewNode - Whether to select the new node
* @return The created node
*/
static UDismembermentGraphNode* CreateNode(TSubclassOf<UDismembermentGraphNode> NodeClass, UEdGraph* ParentGraph, float NodePosX, float NodePosY, bool bSelectNewNode = true);
};

View File

@@ -1,170 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "NiagaraSystem.h"
#include "NiagaraComponent.h"
#include "NiagaraFunctionLibrary.h"
#include "DismembermentPreviewManager.generated.h"
// Add a log category declaration
DECLARE_LOG_CATEGORY_EXTERN(LogFLESHPreview, Log, All);
class UDismembermentGraphNode;
class USkeletalMeshComponent;
class AActor;
class UWorld;
class UNiagaraComponent;
class UDecalComponent;
class UStaticMeshComponent;
/**
* Preview manager for dismemberment effects
* Handles real-time preview of dismemberment nodes
*/
UCLASS()
class FLESHEDITOR_API UDismembermentPreviewManager : public UObject
{
GENERATED_BODY()
public:
// Constructor
UDismembermentPreviewManager();
/**
* Initialize the preview manager
* @param InWorld - The world to create the preview in
*/
void Initialize(TObjectPtr<UWorld> InWorld);
/**
* Clean up the preview manager
*/
void Cleanup();
/**
* Set the target actor for preview
* @param InActor - The actor to preview on
*/
void SetTargetActor(TObjectPtr<AActor> InActor);
/**
* Preview a node
* @param Node - The node to preview
* @return True if the preview was successful
*/
bool PreviewNode(TObjectPtr<UDismembermentGraphNode> Node);
/**
* Clear the current preview
*/
void ClearPreview();
/**
* Update the preview
* @param DeltaTime - Time since last update
*/
void Tick(float DeltaTime);
/**
* Get the target actor
* @return The target actor
*/
TObjectPtr<AActor> GetTargetActor() const { return TargetActor; }
/**
* Get the target skeletal mesh component
* @return The target skeletal mesh component
*/
TObjectPtr<USkeletalMeshComponent> GetTargetSkeletalMesh() const { return TargetSkeletalMesh; }
private:
// The world to create the preview in
UPROPERTY()
TObjectPtr<UWorld> World;
// The target actor
UPROPERTY()
TObjectPtr<AActor> TargetActor;
// The target skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> TargetSkeletalMesh;
// The currently previewed node
UPROPERTY()
TObjectPtr<UDismembermentGraphNode> PreviewedNode;
// Preview components
UPROPERTY()
TArray<TObjectPtr<UNiagaraComponent>> PreviewNiagaraComponents;
UPROPERTY()
TArray<TObjectPtr<UDecalComponent>> PreviewDecalComponents;
UPROPERTY()
TArray<TObjectPtr<UStaticMeshComponent>> PreviewStaticMeshComponents;
// Preview cut plane mesh
UPROPERTY()
TObjectPtr<UStaticMeshComponent> PreviewCutPlaneMesh;
// Preview bone selections
UPROPERTY()
TArray<FName> PreviewBoneSelections;
// Preview cut locations
UPROPERTY()
TArray<FTransform> PreviewCutTransforms;
// Preview blood effect locations
UPROPERTY()
TArray<FTransform> PreviewBloodEffectTransforms;
// Preview organ locations
UPROPERTY()
TArray<FTransform> PreviewOrganTransforms;
// Preview wound locations
UPROPERTY()
TArray<FTransform> PreviewWoundTransforms;
// Find the target skeletal mesh component
bool FindTargetSkeletalMesh();
// Preview a cut node
bool PreviewCutNode(TObjectPtr<class UDismembermentGraphNodeCut> CutNode);
// Preview a bone select node
bool PreviewBoneSelectNode(TObjectPtr<class UDismembermentGraphNodeBoneSelect> BoneSelectNode);
// Preview a blood effect node
bool PreviewBloodEffectNode(TObjectPtr<class UDismembermentGraphNodeBloodEffect> BloodEffectNode);
// Preview a physics node
bool PreviewPhysicsNode(TObjectPtr<class UDismembermentGraphNodePhysics> PhysicsNode);
// Preview an organ node
bool PreviewOrganNode(TObjectPtr<class UDismembermentGraphNodeOrgan> OrganNode);
// Preview a wound node
bool PreviewWoundNode(TObjectPtr<class UDismembermentGraphNodeWound> WoundNode);
// Create a preview cut plane mesh
TObjectPtr<UStaticMeshComponent> CreatePreviewCutPlaneMesh(const FVector& Location, const FVector& Direction, float Width, float Depth, UMaterialInterface* Material);
// Create a preview blood effect
TObjectPtr<UNiagaraComponent> CreatePreviewBloodEffect(const FVector& Location, UNiagaraSystem* BloodEffect, float BloodAmount, float BloodPressure);
// Create a preview blood pool
TObjectPtr<UDecalComponent> CreatePreviewBloodPool(const FVector& Location, float Size, UMaterialInterface* Material);
// Create a preview organ
TObjectPtr<UStaticMeshComponent> CreatePreviewOrgan(UStaticMesh* OrganMesh, UMaterialInterface* OrganMaterial, const FName& AttachBoneName, const FVector& RelativeLocation, const FRotator& RelativeRotation, const FVector& RelativeScale);
// Create a preview wound
TObjectPtr<UDecalComponent> CreatePreviewWound(const FVector& Location, float Size, UMaterialInterface* Material);
// Clear all preview components
void ClearPreviewComponents();
};

View File

@@ -1,68 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "SGraphNode.h"
class UDismembermentGraphNode;
/**
* Visual representation of a dismemberment graph node
*/
class FLESHEDITOR_API SDismembermentGraphNode : public SGraphNode
{
public:
SLATE_BEGIN_ARGS(SDismembermentGraphNode) {}
SLATE_END_ARGS()
void Construct(const FArguments& InArgs, UEdGraphNode* InNode);
// SGraphNode interface
virtual void UpdateGraphNode() override;
virtual void CreatePinWidgets() override;
virtual void AddPin(const TSharedRef<SGraphPin>& PinToAdd) override;
virtual TSharedPtr<SToolTip> GetComplexTooltip() override;
virtual FReply OnMouseButtonDown(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent) override;
virtual FReply OnMouseButtonUp(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent) override;
virtual FReply OnMouseMove(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent) override;
virtual void OnMouseEnter(const FGeometry& MyGeometry, const FPointerEvent& MouseEvent) override;
virtual void OnMouseLeave(const FPointerEvent& MouseEvent) override;
// End of SGraphNode interface
protected:
// Get the dismemberment graph node
UDismembermentGraphNode* GetDismembermentGraphNode() const;
// Get the node title widget
TSharedRef<SWidget> GetNodeTitleWidget();
// Get the node body widget
TSharedRef<SWidget> GetNodeBodyWidget();
// Get the node preview widget
TSharedRef<SWidget> GetNodePreviewWidget();
// Node color
FSlateColor GetNodeColor() const;
// Node title color
FSlateColor GetNodeTitleColor() const;
// Node title text
FText GetNodeTitle() const;
// Node category text
FText GetNodeCategory() const;
// Node description text
FText GetNodeDescription() const;
// Is the node selected
bool IsNodeSelected() const;
// Is the node hovered
bool IsNodeHovered() const;
private:
// Is the node hovered
bool bIsHovered;
};

View File

@@ -1,120 +0,0 @@
#pragma once
#include "CoreMinimal.h"
#include "Widgets/SCompoundWidget.h"
#include "EditorViewportClient.h"
#include "SEditorViewport.h"
class UDismembermentPreviewManager;
class USkeletalMesh;
class AActor;
class FPreviewScene;
class SDismembermentPreviewViewportClient;
/**
* Viewport for previewing dismemberment effects
*/
class FLESHEDITOR_API SDismembermentPreviewViewport : public SEditorViewport
{
public:
SLATE_BEGIN_ARGS(SDismembermentPreviewViewport)
{}
SLATE_END_ARGS()
/**
* Constructs the viewport widget
*/
void Construct(const FArguments& InArgs);
/**
* Destructor
*/
virtual ~SDismembermentPreviewViewport();
/**
* Set the preview manager
* @param InPreviewManager - The preview manager to use
*/
void SetPreviewManager(UDismembermentPreviewManager* InPreviewManager);
/**
* Set the preview skeletal mesh
* @param InSkeletalMesh - The skeletal mesh to preview
*/
void SetPreviewSkeletalMesh(USkeletalMesh* InSkeletalMesh);
/**
* Get the preview actor
* @return The preview actor
*/
AActor* GetPreviewActor() const;
/**
* Refresh the viewport
*/
void RefreshViewport();
protected:
// SEditorViewport interface
virtual TSharedRef<FEditorViewportClient> MakeEditorViewportClient() override;
virtual void OnFocusViewportToSelection() override;
virtual bool IsVisible() const override;
// End of SEditorViewport interface
private:
// The preview scene
TSharedPtr<FPreviewScene> PreviewScene;
// The viewport client
TSharedPtr<SDismembermentPreviewViewportClient> ViewportClient;
// The preview manager
TObjectPtr<UDismembermentPreviewManager> PreviewManager;
// The preview actor
TObjectPtr<AActor> PreviewActor;
// Create the preview actor
void CreatePreviewActor();
// Update the preview actor
void UpdatePreviewActor();
};
/**
* Viewport client for previewing dismemberment effects
*/
class SDismembermentPreviewViewportClient : public FEditorViewportClient
{
public:
/**
* Constructor
* @param InPreviewScene - The preview scene
* @param InViewportWidget - The viewport widget
*/
SDismembermentPreviewViewportClient(FPreviewScene* InPreviewScene, const TWeakPtr<SDismembermentPreviewViewport>& InViewportWidget);
/**
* Destructor
*/
virtual ~SDismembermentPreviewViewportClient();
// FEditorViewportClient interface
virtual void Tick(float DeltaSeconds) override;
virtual void Draw(const FSceneView* View, FPrimitiveDrawInterface* PDI) override;
virtual void DrawCanvas(FViewport& InViewport, FSceneView& View, FCanvas& Canvas) override;
// End of FEditorViewportClient interface
/**
* Set the preview manager
* @param InPreviewManager - The preview manager to use
*/
void SetPreviewManager(UDismembermentPreviewManager* InPreviewManager);
private:
// The viewport widget
TWeakPtr<SDismembermentPreviewViewport> ViewportWidget;
// The preview manager
TObjectPtr<UDismembermentPreviewManager> PreviewManager;
};

View File

@@ -3,20 +3,31 @@
#include "CoreMinimal.h"
#include "Toolkits/AssetEditorToolkit.h"
#include "Widgets/Docking/SDockTab.h"
#include "BooleanCutTool.h"
#include "EditorUndoClient.h"
#include "Widgets/SViewport.h"
#include "EditorViewportClient.h"
#include "Widgets/Input/SSearchBox.h"
#include "Slate/SceneViewport.h"
#include "Framework/Application/SlateApplication.h"
#include "Styling/SlateStyleRegistry.h"
// Forward declaration for BooleanCutTool
class FBooleanCutTool;
#include "Logging/LogMacros.h"
#include "FLESHGraph/FLESHCompiler.h"
#include "FLESHGraph/FLESHExecutor.h"
class SDockTab;
class SGraphEditor;
class SPropertyTreeView;
class SAssetBrowser;
class SMatrixInputWidget;
class FFLESHViewportClient;
class FSceneViewport;
class UVisceraNodeObject;
class FDismembermentEditor;
// Forward declaration
class FFLESHViewportClient;
// Define log category
DECLARE_LOG_CATEGORY_EXTERN(LogFLESHEditor, Log, All);
@@ -203,7 +214,9 @@ public:
virtual FText GetBaseToolkitName() const override;
virtual FString GetWorldCentricTabPrefix() const override;
virtual FLinearColor GetWorldCentricTabColorScale() const override;
// End of FAssetEditorToolkit interface
// Override FAssetEditorToolkit methods with correct parameter types
virtual void OnToolkitHostingStarted(const TSharedRef<class IToolkit>& InToolkit) override;
virtual void OnToolkitHostingFinished(const TSharedRef<class IToolkit>& InToolkit) override;
// FEditorUndoClient interface
virtual void PostUndo(bool bSuccess) override;
@@ -219,12 +232,22 @@ public:
UObject* GetEditingObject() const { return EditingObject; }
// Add DismembermentEditor related tab spawners
TSharedRef<SDockTab> SpawnTab_LayerSystem(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_LayerSystemPanel(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_PhysicsSettings(const FSpawnTabArgs& Args);
// Create DismembermentEditor related widgets
TSharedRef<SBorder> CreateLayerSystemWidget();
TSharedRef<SBorder> CreatePhysicsSettingsWidget();
TSharedRef<SWidget> CreateNodeTreeWidget();
// Generate node tree row
TSharedRef<ITableRow> OnGenerateNodeTreeRow(TSharedPtr<FVisceraNodeItem> Item, const TSharedRef<STableViewBase>& OwnerTable);
// Get node tree children
void OnGetNodeTreeChildren(TSharedPtr<FVisceraNodeItem> Item, TArray<TSharedPtr<FVisceraNodeItem>>& OutChildren);
// Open node tree right-click menu
TSharedPtr<SWidget> OnNodeTreeContextMenuOpening();
private:
// Tab spawners
@@ -234,6 +257,9 @@ private:
TSharedRef<SDockTab> SpawnTab_MatrixEditor(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_GraphEditor(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_Toolbar(const FSpawnTabArgs& Args);
// Additional tab spawners
TSharedRef<SDockTab> SpawnTab_DismembermentGraph(const FSpawnTabArgs& Args);
TSharedRef<SDockTab> SpawnTab_NodeTree(const FSpawnTabArgs& Args);
// Create viewport widget
TSharedRef<SWidget> CreateViewportWidget();
@@ -256,7 +282,7 @@ private:
// Create command list
void CreateCommandList();
// Extend toolbar with custom buttons
// Extend toolbar
void ExtendToolbar();
// Generate bone tree row
@@ -273,6 +299,18 @@ private:
// Build viscera node tree
void BuildVisceraNodeTree();
// Count total nodes in a tree recursively
int32 CountNodes(TSharedPtr<FVisceraNodeItem> Node);
// 从父节点中递归移除节点
bool RemoveNodeFromParent(TSharedPtr<FVisceraNodeItem> ParentNode, TSharedPtr<FVisceraNodeItem> NodeToRemove);
// 递归复制节点
void CopyNodeRecursive(TSharedPtr<FVisceraNodeItem> SourceNode, TSharedPtr<FVisceraNodeItem> TargetParentNode);
// 查找节点的父节点并添加复制的节点
bool AddCopyToParent(TSharedPtr<FVisceraNodeItem> CurrentNode, TSharedPtr<FVisceraNodeItem> NodeToFind, TSharedPtr<FVisceraNodeItem> NodeCopy);
// Tree view generation methods
TSharedRef<ITableRow> OnGenerateNodeRow(TSharedPtr<FVisceraNodeItem> InItem, const TSharedRef<STableViewBase>& OwnerTable);
@@ -299,6 +337,15 @@ private:
void OnSavePreset();
void OnLoadPreset();
// 按钮点击事件处理
FReply OnResetCameraClicked();
FReply OnToggleWireframeClicked();
FReply OnToggleBonesClicked();
FReply OnImportModelClicked();
FReply OnSavePresetClicked();
FReply OnLoadPresetClicked();
FReply OnBooleanCutClicked();
// Viewport widget
TSharedPtr<class SViewport> ViewportWidget;
@@ -350,13 +397,8 @@ private:
// Scene viewport
TSharedPtr<FSceneViewport> Viewport;
// Viewport related methods
FReply OnResetCameraClicked();
FReply OnToggleWireframeClicked();
FReply OnToggleBonesClicked();
// The object being edited
UObject* EditingObject;
TObjectPtr<UObject> EditingObject;
// Tab IDs
static const FName ViewportTabId;
@@ -368,9 +410,7 @@ private:
static const FName LayerSystemTabId;
static const FName PhysicsSettingsTabId;
static const FName DismembermentGraphTabId;
// Is the editor initialized?
bool bIsInitialized;
static const FName NodeTreeTabId;
// New DismembermentEditor related Widgets
TSharedPtr<SBorder> LayerSystemWidget;
@@ -378,4 +418,57 @@ private:
// Error handling method
void HandleEditorError(const FText& ErrorMessage);
// Layer names for dropdown
TArray<TSharedPtr<FString>> LayerNames;
// Layer descriptions for tooltips
TMap<FString, FString> LayerDescriptions;
// Layer visibility states
TMap<FString, bool> LayerVisibility;
// Node tree root nodes
TArray<TSharedPtr<FVisceraNodeItem>> NodeTreeRoots;
// Get node tree root nodes
const TArray<TSharedPtr<FVisceraNodeItem>>& GetNodeTreeRoots() const { return NodeTreeRoots; }
// Get currently selected node
TSharedPtr<FVisceraNodeItem> GetSelectedNodeItem() const { return SelectedNodeItem; }
// Make these methods public so they can be accessed by FFLESHViewportClient
friend class FFLESHViewportClient;
// Node search filter text
FText NodeSearchText;
// Filtered node tree roots
TArray<TSharedPtr<FVisceraNodeItem>> FilteredNodeTreeRoots;
// Check if a node matches the search filter
bool DoesNodeMatchFilter(const TSharedPtr<FVisceraNodeItem>& Node) const;
// Apply search filter to node tree
void ApplySearchFilter();
// Reset search filter
void ResetSearchFilter();
// Handle node search text changes
void OnNodeSearchTextChanged(const FText& InFilterText);
// Bone tree items
TArray<TSharedPtr<FBoneTreeItem>> BoneTreeRoots;
// Boolean cut tool
TSharedPtr<class FBooleanCutTool> BooleanCutTool;
// FLESH Compiler
UPROPERTY()
UFLESHCompiler* FLESHCompiler;
// FLESH Executor
UPROPERTY()
UFLESHExecutor* FLESHExecutor;
};

View File

@@ -23,7 +23,7 @@ public:
void OpenFLESHEditorCommand();
/** Open FLESH Editor */
void OpenFLESHEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, UObject* ObjectToEdit);
void OpenFLESHEditor(const EToolkitMode::Type Mode, const TSharedPtr<IToolkitHost>& InitToolkitHost, TObjectPtr<UObject> ObjectToEdit);
private:
/** Plugin command list */

View File

@@ -0,0 +1,141 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "NiagaraSystem.h"
#include "FLESHCompiler.generated.h"
class UFLESHGraphNode;
class UFLESHGraph;
/**
* FLESH node type enum
*/
UENUM(BlueprintType)
enum class EFLESHNodeType : uint8
{
None UMETA(DisplayName = "None"),
Cut UMETA(DisplayName = "Cut"),
BloodEffect UMETA(DisplayName = "Blood Effect"),
Physics UMETA(DisplayName = "Physics"),
Organ UMETA(DisplayName = "Organ"),
Wound UMETA(DisplayName = "Wound"),
BoneSelection UMETA(DisplayName = "Bone Selection")
};
/**
* FLESH node data structure
*/
USTRUCT(BlueprintType)
struct FFLESHNodeData
{
GENERATED_BODY()
// Node name
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
FName NodeName;
// Node type
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
EFLESHNodeType NodeType;
// Node parameters
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, float> FloatParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, FVector> VectorParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, FRotator> RotatorParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, bool> BoolParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, FString> StringParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, TObjectPtr<UObject>> ObjectParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, FName> NameParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, FLinearColor> ColorParameters;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TMap<FName, TObjectPtr<UNiagaraSystem>> NiagaraSystemParameters;
// Connected nodes
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
TArray<int32> ConnectedNodes;
};
/**
* FLESH compiler class
* Compiles FLESH graph into executable format
*/
UCLASS(BlueprintType)
class FLESHEDITOR_API UFLESHCompiler : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHCompiler();
// Initialize compiler with graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
void Initialize(UFLESHGraph* InGraph);
// Compile graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool Compile();
// Get compiled node data
UFUNCTION(BlueprintCallable, Category = "FLESH")
TArray<FFLESHNodeData> GetCompiledNodeData() const;
// Get execution order
UFUNCTION(BlueprintCallable, Category = "FLESH")
TArray<int32> GetExecutionOrder() const;
// Check if compilation was successful
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool IsCompilationSuccessful() const;
// Get error message
UFUNCTION(BlueprintCallable, Category = "FLESH")
FString GetErrorMessage() const;
private:
// Source graph
UPROPERTY()
TObjectPtr<UFLESHGraph> SourceGraph;
// Compiled node data
UPROPERTY()
TArray<FFLESHNodeData> CompiledNodeData;
// Execution order
UPROPERTY()
TArray<int32> ExecutionOrder;
// Compilation status
UPROPERTY()
bool bCompilationSuccessful;
// Error message
UPROPERTY()
FString ErrorMessage;
// Process node
bool ProcessNode(UFLESHGraphNode* Node, int32 NodeIndex);
// Sort nodes in execution order
void SortNodes();
// Validate graph
bool ValidateGraph();
};

View File

@@ -0,0 +1,80 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "FLESHGraph/FLESHCompiler.h"
#include "FLESHExecutor.generated.h"
class UBooleanCutTool;
class USkeletalMeshComponent;
/**
* FLESH executor class
* Executes compiled FLESH graph on target actor
*/
UCLASS(BlueprintType)
class FLESHEDITOR_API UFLESHExecutor : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHExecutor();
// Initialize executor with compiler
UFUNCTION(BlueprintCallable, Category = "FLESH")
void Initialize(UFLESHCompiler* InCompiler);
// Execute graph on target actor
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool Execute(AActor* InTargetActor);
// Set boolean cut tool
UFUNCTION(BlueprintCallable, Category = "FLESH")
void SetCutTool(UBooleanCutTool* InCutTool);
// Get boolean cut tool
UFUNCTION(BlueprintCallable, Category = "FLESH")
UBooleanCutTool* GetCutTool() const;
private:
// Compiler reference
UPROPERTY()
TObjectPtr<UFLESHCompiler> Compiler;
// Target actor
UPROPERTY()
TObjectPtr<AActor> TargetActor;
// Target skeletal mesh component
UPROPERTY()
TObjectPtr<USkeletalMeshComponent> TargetSkeletalMesh;
// Boolean cut tool
UPROPERTY()
TObjectPtr<UBooleanCutTool> CutTool;
// Find target skeletal mesh component
bool FindTargetSkeletalMesh();
// Execute node
bool ExecuteNode(const FFLESHNodeData& NodeData);
// Execute cut node
bool ExecuteCutNode(const FFLESHNodeData& NodeData);
// Execute blood effect node
bool ExecuteBloodEffectNode(const FFLESHNodeData& NodeData);
// Execute physics node
bool ExecutePhysicsNode(const FFLESHNodeData& NodeData);
// Execute organ node
bool ExecuteOrganNode(const FFLESHNodeData& NodeData);
// Execute wound node
bool ExecuteWoundNode(const FFLESHNodeData& NodeData);
// Execute bone selection node
bool ExecuteBoneSelectionNode(const FFLESHNodeData& NodeData);
};

View File

@@ -0,0 +1,74 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "FLESHGraph.generated.h"
class UFLESHGraphNode;
/**
* FLESH graph class
* Manages nodes in the FLESH editor
*/
UCLASS(BlueprintType)
class FLESHEDITOR_API UFLESHGraph : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHGraph();
// Initialize graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
void Initialize();
// Add node
UFUNCTION(BlueprintCallable, Category = "FLESH")
UFLESHGraphNode* AddNode(TSubclassOf<UFLESHGraphNode> NodeClass, const FVector2D& Position);
// Remove node
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool RemoveNode(UFLESHGraphNode* Node);
// Connect nodes
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool ConnectNodes(UFLESHGraphNode* SourceNode, UFLESHGraphNode* TargetNode);
// Disconnect nodes
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool DisconnectNodes(UFLESHGraphNode* SourceNode, UFLESHGraphNode* TargetNode);
// Get all nodes
UFUNCTION(BlueprintCallable, Category = "FLESH")
TArray<UFLESHGraphNode*> GetAllNodes() const;
// Get root node
UFUNCTION(BlueprintCallable, Category = "FLESH")
UFLESHGraphNode* GetRootNode() const;
// Set root node
UFUNCTION(BlueprintCallable, Category = "FLESH")
void SetRootNode(UFLESHGraphNode* InRootNode);
// Clear graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
void ClearGraph();
// Save graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool SaveGraph();
// Load graph
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool LoadGraph();
private:
// All nodes in the graph
UPROPERTY()
TArray<TObjectPtr<UFLESHGraphNode>> Nodes;
// Root node
UPROPERTY()
TObjectPtr<UFLESHGraphNode> RootNode;
};

View File

@@ -0,0 +1,93 @@
#pragma once
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "FLESHCompiler.h"
#include "FLESHGraphNode.generated.h"
/**
* FLESH Graph Node Base Class
* Base class for all FLESH graph node types
*/
UCLASS(BlueprintType, Abstract)
class FLESHEDITOR_API UFLESHGraphNode : public UObject
{
GENERATED_BODY()
public:
// Constructor
UFLESHGraphNode();
// Get node title
UFUNCTION(BlueprintCallable, Category = "FLESH")
virtual FString GetNodeTitle() const;
// Get node type
UFUNCTION(BlueprintCallable, Category = "FLESH")
virtual EFLESHNodeType GetNodeType() const;
// Get node color
UFUNCTION(BlueprintCallable, Category = "FLESH")
virtual FLinearColor GetNodeColor() const;
// Get node position
UFUNCTION(BlueprintCallable, Category = "FLESH")
FVector2D GetNodePosition() const;
// Set node position
UFUNCTION(BlueprintCallable, Category = "FLESH")
void SetNodePosition(const FVector2D& InPosition);
// Get input nodes
UFUNCTION(BlueprintCallable, Category = "FLESH")
TArray<UFLESHGraphNode*> GetInputNodes() const;
// Get output nodes
UFUNCTION(BlueprintCallable, Category = "FLESH")
TArray<UFLESHGraphNode*> GetOutputNodes() const;
// Add input node
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool AddInputNode(UFLESHGraphNode* Node);
// Add output node
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool AddOutputNode(UFLESHGraphNode* Node);
// Remove input node
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool RemoveInputNode(UFLESHGraphNode* Node);
// Remove output node
UFUNCTION(BlueprintCallable, Category = "FLESH")
bool RemoveOutputNode(UFLESHGraphNode* Node);
// Compile node
UFUNCTION(BlueprintCallable, Category = "FLESH")
virtual bool CompileNode(FFLESHNodeData& OutNodeData);
protected:
// Node title
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
FString NodeTitle;
// Node type
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
EFLESHNodeType NodeType;
// Node color
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
FLinearColor NodeColor;
// Node position
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "FLESH")
FVector2D NodePosition;
// Input nodes
UPROPERTY()
TArray<TObjectPtr<UFLESHGraphNode>> InputNodes;
// Output nodes
UPROPERTY()
TArray<TObjectPtr<UFLESHGraphNode>> OutputNodes;
};

View File

@@ -28,6 +28,18 @@ public:
/** Handle mouse clicks - new API */
virtual bool InputKey(const FInputKeyEventArgs& EventArgs) override;
/** Override mouse movement handling to provide camera controls similar to asset editor */
virtual bool InputAxis(FViewport* InViewport, int32 ControllerId, FKey Key, float Delta, float DeltaTime, int32 NumSamples = 1, bool bGamepad = false) override;
/** Load and display objects from NodeTree */
void LoadNodesFromNodeTree();
/** Update objects displayed in the viewport */
void UpdateVisibleNodes();
/** Focus on the selected object */
void FocusOnSelectedNode();
/** Reset camera */
void ResetCamera();
@@ -52,4 +64,7 @@ private:
/** Preview scene for the viewport */
TSharedPtr<FPreviewScene> PreviewScene;
/** Recursively load node and its children */
void LoadNodeRecursive(TSharedPtr<FVisceraNodeItem> Node, USceneComponent* ParentComponent);
};

View File

@@ -2,6 +2,7 @@
#include "CoreMinimal.h"
#include "UObject/NoExportTypes.h"
#include "FLESH/Public/BooleanCutTool.h" // Added ECapMeshMethod enum reference
#include "VisceraNodeObject.generated.h"
// Forward declarations