Files
UnrealEngine/Engine/Source/ThirdParty/SpeedTree/SpeedTreeDataBuffer/Platform_inl.h
2025-05-18 13:04:45 +08:00

194 lines
5.7 KiB
C

///////////////////////////////////////////////////////////////////////
//
// *** INTERACTIVE DATA VISUALIZATION (IDV) PROPRIETARY INFORMATION ***
//
// This software is supplied under the terms of a license agreement or
// nondisclosure agreement with Interactive Data Visualization and may
// not be copied or disclosed except in accordance with the terms of
// that agreement
//
// Copyright (c) 2003-2017 IDV, Inc.
// All Rights Reserved.
//
// IDV, Inc.
// http://www.idvinc.com
// Half-to-float and Float-to-half code taken from "OpenGL ES 2.0
// Programming Guide" by Aaftab Munshi, Dan Ginsburg, and Dave Shreiner.
// The following license pertains only to the parts of the st_float16
// class that use code and concepts from this published work.
//
// The MIT License (MIT)
//
// Copyright (c) 2013 Dan Ginsburg, Budirijanto Purnomo
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//////////////////////////////////////////////////////////////////////
// Constants
// -15 stored using a single precision bias of 127
const unsigned int HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP = 0x38000000;
// max exponent value in single precision that will be converted
// to Inf or Nan when stored as a half-float
const unsigned int HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP = 0x47800000;
// 255 is the max exponent biased value
const unsigned int FLOAT_MAX_BIASED_EXP = (0xFF << 23);
const unsigned int HALF_FLOAT_MAX_BIASED_EXP = (0x1F << 10);
//////////////////////////////////////////////////////////////////////
// st_float16::st_float16
inline st_float16::st_float16( )
{
*this = st_float16(0.0f);
}
//////////////////////////////////////////////////////////////////////
// st_float16::st_float16
inline st_float16::st_float16(st_float32 fSinglePrecision)
{
union
{
st_float32 f;
st_uint32 x;
};
f = fSinglePrecision;
st_uint32 sign = (st_uint16) (x >> 31);
st_uint32 mantissa;
st_uint32 exp;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
exp = x & FLOAT_MAX_BIASED_EXP;
if (exp >= HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP)
{
// check if the original single precision float number is a NaN
if (mantissa && (exp == FLOAT_MAX_BIASED_EXP))
{
// we have a single precision NaN
mantissa = (1 << 23) - 1;
}
else
{
// 16-bit half-float representation stores number as Inf
mantissa = 0;
}
m_uiValue = (((st_uint16)sign) << 15) | (st_uint16)(HALF_FLOAT_MAX_BIASED_EXP) |
(st_uint16)(mantissa >> 13);
}
// check if exponent is <= -15
else if (exp <= HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP)
{
// store a denorm half-float value or zero
exp = (HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP - exp) >> 23;
mantissa >>= (14 + exp);
m_uiValue = (((st_uint16)sign) << 15) | (st_uint16)(mantissa);
}
else
{
m_uiValue = (((st_uint16)sign) << 15) |
(st_uint16)((exp - HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP) >> 13) |
(st_uint16)(mantissa >> 13);
}
}
//////////////////////////////////////////////////////////////////////
// st_float16::st_float16
inline st_float16::st_float16(const st_float16& hfCopy)
{
m_uiValue = hfCopy.m_uiValue;
}
//////////////////////////////////////////////////////////////////////
// st_float16::operator st_float32
inline st_float16::operator st_float32(void) const
{
st_uint32 sign = (st_uint32) (m_uiValue >> 15);
st_uint32 mantissa = (st_uint32) (m_uiValue & ((1 << 10) - 1));
st_uint32 exp = (st_uint32) (m_uiValue & HALF_FLOAT_MAX_BIASED_EXP);
union
{
st_float32 f;
st_uint32 x;
};
if (exp == HALF_FLOAT_MAX_BIASED_EXP)
{
// we have a half-float NaN or Inf
// half-float NaNs will be converted to a single precision NaN
// half-float Infs will be converted to a single precision Inf
exp = FLOAT_MAX_BIASED_EXP;
if (mantissa)
mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
}
else if (exp == 0x0)
{
// convert half-float zero/denorm to single precision value
if (mantissa)
{
mantissa <<= 1;
exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
// check for leading 1 in denorm mantissa
while ((mantissa & (1 << 10)) == 0)
{
// for every leading 0, decrement single precision exponent by 1
// and shift half-float mantissa value to the left
mantissa <<= 1;
exp -= (1 << 23);
}
// clamp the mantissa to 10-bits
mantissa &= ((1 << 10) - 1);
// shift left to generate single-precision mantissa of 23-bits
mantissa <<= 13;
}
}
else
{
// shift left to generate single-precision mantissa of 23-bits
mantissa <<= 13;
// generate single precision biased exponent value
exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
}
x = (sign << 31) | exp | mantissa;
return f;
}