Files
UnrealEngine/Engine/Source/Runtime/Navmesh/Private/Recast/RecastLayers.cpp
2025-05-18 13:04:45 +08:00

1543 lines
40 KiB
C++

// Copyright Epic Games, Inc. All Rights Reserved.
// Modified version of Recast/Detour's source file
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "CoreMinimal.h"
#include "Stats/Stats.h"
#define _USE_MATH_DEFINES
#include "Recast/Recast.h"
#include "Recast/RecastAlloc.h"
#include "Recast/RecastAssert.h"
struct rcLayerRegionMonotone
{
int chunkId;
rcIntArray neis;
rcIntArray layers;
rcSpanUInt ymin, ymax;
unsigned short layerId; // Layer ID
unsigned char base : 1; // Flag indicating if the region is the base of merged regions.
unsigned char remap : 1;
};
static void rcFreeLayerRegionMonotones(rcLayerRegionMonotone* regs, int nregs)
{
// destroy all elements to free internal rcIntArray allocations
for (int i = 0; i < nregs; i++)
{
regs[i].~rcLayerRegionMonotone();
}
rcFree(regs);
}
static void addUnique(rcIntArray& a, int v)
{
if (!a.contains(v))
{
a.push(v);
}
}
inline bool overlapRange(const rcSpanUInt amin, const rcSpanUInt amax,
const rcSpanUInt bmin, const rcSpanUInt bmax)
{
return (amin > bmax || amax < bmin) ? false : true;
}
static void fixLayerConnections(rcHeightfieldLayer* layer)
{
// [UE: break one directional connections, contour tracing gets stuck in infinite loop]
const int lw = layer->width;
const int lh = layer->height;
for (int y = 0; y < lh; ++y)
{
for (int x = 0; x < lw; ++x)
{
const int idx = x + y*lw;
const int con = layer->cons[idx];
for (int dir = 0; dir < 4; ++dir)
{
if ((con & (1 << dir)) == 0)
{
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
{
const int nidx = nx + ny*lw;
const int oppDir = (dir + 2) % 4;
layer->cons[nidx] &= ~(1 << oppDir);
}
}
}
}
}
}
struct rcLayerSweepSpan
{
unsigned short ns; // number samples
unsigned short id; // region id
unsigned short nei; // neighbour id
};
static bool CollectLayerRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, const rcBorderSize borderSize, //@UE
unsigned short* srcReg, rcLayerRegionMonotone*& regs, int& nregs)
{
const int w = chf.width;
const int h = chf.height;
// assume 8 unique layers on each place along row
const int32 MaxSweeps = w * 8;
rcScopedDelete<rcLayerSweepSpan> sweeps(MaxSweeps);
if (!sweeps)
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'sweeps' (%d).", MaxSweeps);
return false;
}
// Partition walkable area into monotone regions.
rcIntArray prev(256);
unsigned short regId = 0;
for (int y = borderSize.low; y < h - borderSize.high; ++y) //@UE
{
prev.resize(regId + 1);
memset(&prev[0], 0, sizeof(int)*regId);
unsigned short sweepId = 0;
unsigned int MaxSpanCount = 0;
for (int x = borderSize.low; x < w - borderSize.high; ++x) //@UE
{
const rcCompactCell& c = chf.cells[x + y*w];
MaxSpanCount = rcMax(MaxSpanCount, c.count);
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (chf.areas[i] == RC_NULL_AREA) continue;
unsigned short sid = 0xffff;
// -x
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax + ay*w].index + rcGetCon(s, 0);
if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xffff)
sid = srcReg[ai];
}
if (sid == 0xffff)
{
sid = sweepId++;
if (sid < MaxSweeps)
{
sweeps[sid].nei = 0xffff;
sweeps[sid].ns = 0;
}
else
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Layer split is too complex, skipping tile! x:%d y:%d spansTotal:%d spansCurrent:%d spansMax:%d", x, y, chf.spanCount, c.count, MaxSpanCount);
return false;
}
}
// -y
if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax + ay*w].index + rcGetCon(s, 3);
const unsigned short nr = srcReg[ai];
if (nr != 0xffff)
{
// Set neighbour when first valid neighbour is encoutered.
if (sweeps[sid].ns == 0)
sweeps[sid].nei = nr;
if (sweeps[sid].nei == nr)
{
// Update existing neighbour
sweeps[sid].ns++;
prev[nr]++;
}
else
{
// This is hit if there is nore than one neighbour.
// Invalidate the neighbour.
sweeps[sid].nei = 0xffff;
}
}
}
srcReg[i] = sid;
}
}
// Create unique ID.
for (int i = 0; i < sweepId; ++i)
{
// If the neighbour is set and there is only one continuous connection to it,
// the sweep will be merged with the previous one, else new region is created.
if (sweeps[i].nei != 0xffff && prev[sweeps[i].nei] == sweeps[i].ns)
{
sweeps[i].id = sweeps[i].nei;
}
else
{
sweeps[i].id = regId++;
}
}
// Remap local sweep ids to region ids.
for (int x = borderSize.low; x < w - borderSize.high; ++x) //@UE
{
const rcCompactCell& c = chf.cells[x + y*w];
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
{
if (srcReg[i] != 0xffff)
srcReg[i] = sweeps[srcReg[i]].id;
}
}
}
// Allocate and init layer regions.
nregs = (int)regId;
// @UE BEGIN: special handling of "no regions"
if (nregs == 0)
{
regs = 0;
// treating this as success because we successfully generated 0 regions,
// no issues occurred, everything was good. Just no regions.
return true;
}
// @UE END
regs = (rcLayerRegionMonotone*)rcAlloc(sizeof(rcLayerRegionMonotone)*nregs, RC_ALLOC_TEMP);
if (!regs)
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'regs' (%d).", nregs);
return false;
}
memset((void*)regs, 0, sizeof(rcLayerRegionMonotone)*nregs);
for (int i = 0; i < nregs; ++i)
{
regs[i].layerId = 0xffff;
regs[i].ymin = RC_SPAN_MAX_HEIGHT;
regs[i].ymax = 0;
}
rcIntArray lregs(64);
// Find region neighbours and overlapping regions.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x + y*w];
lregs.resize(0);
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const unsigned short ri = srcReg[i];
if (ri == 0xffff) continue;
regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
// Collect all region layers.
lregs.push(ri);
// Update neighbours
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax + ay*w].index + rcGetCon(s, dir);
const unsigned short rai = srcReg[ai];
if (rai != 0xffff && rai != ri)
addUnique(regs[ri].neis, rai);
}
}
}
// Update overlapping regions.
const int nlregs = lregs.size();
for (int i = 0; i < nlregs - 1; ++i)
{
for (int j = i + 1; j < nlregs; ++j)
{
if (lregs[i] != lregs[j])
{
rcLayerRegionMonotone& ri = regs[lregs[i]];
rcLayerRegionMonotone& rj = regs[lregs[j]];
addUnique(ri.layers, lregs[j]);
addUnique(rj.layers, lregs[i]);
}
}
}
}
}
return true;
}
static bool CollectLayerRegionsChunky(rcContext* ctx, rcCompactHeightfield& chf,
const rcBorderSize borderSize, const int chunkSize, //@UE
unsigned short* srcReg, rcLayerRegionMonotone*& regs, int& nregs)
{
const int w = chf.width;
const int h = chf.height;
rcScopedDelete<rcLayerSweepSpan> sweeps(chunkSize);
if (!sweeps)
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsChunky: Out of memory 'sweeps' (%d).", chunkSize);
return false;
}
// Partition walkable area into monotone regions.
rcIntArray prev(256);
unsigned short regId = 0;
for (int chunkx = borderSize.low; chunkx < w-borderSize.high; chunkx += chunkSize) //@UE
{
for (int chunky = borderSize.low; chunky < h-borderSize.high; chunky += chunkSize) //@UE
{
const int maxx = rcMin(chunkx + chunkSize, w-borderSize.high); //@UE
const int maxy = rcMin(chunky + chunkSize, h-borderSize.high); //@UE
for (int y = chunky; y < maxy; ++y)
{
prev.resize(regId+1);
memset(&prev[0],0,sizeof(int)*regId);
unsigned short sweepId = 0;
for (int x = chunkx; x < maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (chf.areas[i] == RC_NULL_AREA) continue;
unsigned short sid = 0xffff;
// -x
if (rcGetCon(s, 0) != RC_NOT_CONNECTED && x > chunkx)
{
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xffff)
sid = srcReg[ai];
}
if (sid == 0xffff)
{
sid = sweepId++;
// UE: multiple spans per single X row may result in more sweeps than originally allocated
if (sweeps.resizeGrow(sid + 1))
{
sweeps[sid].nei = 0xffff;
sweeps[sid].ns = 0;
}
else
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsChunky: Out of memory 'sweeps' resize (%d).", sid + 1);
return false;
}
}
// -y
if (rcGetCon(s,3) != RC_NOT_CONNECTED && y > chunky)
{
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
const unsigned short nr = srcReg[ai];
if (nr != 0xffff)
{
// Set neighbour when first valid neighbour is encoutered.
if (sweeps[sid].ns == 0)
sweeps[sid].nei = nr;
if (sweeps[sid].nei == nr)
{
// Update existing neighbour
sweeps[sid].ns++;
prev[nr]++;
}
else
{
// This is hit if there is nore than one neighbour.
// Invalidate the neighbour.
sweeps[sid].nei = 0xffff;
}
}
}
srcReg[i] = sid;
}
}
// Create unique ID.
for (int i = 0; i < sweepId; ++i)
{
// If the neighbour is set and there is only one continuous connection to it,
// the sweep will be merged with the previous one, else new region is created.
if (sweeps[i].nei != 0xffff && prev[sweeps[i].nei] == sweeps[i].ns)
{
sweeps[i].id = sweeps[i].nei;
}
else
{
sweeps[i].id = regId++;
}
}
// Remap local sweep ids to region ids.
for (int x = chunkx; x < maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (srcReg[i] != 0xffff)
srcReg[i] = sweeps[srcReg[i]].id;
}
}
}
}
}
// Allocate and init layer regions.
nregs = (int)regId;
// @UE BEGIN: special handling of "no regions"
if (nregs == 0)
{
regs = 0;
// treating this as success because we successfully generated 0 regions,
// no issues occurred, everything was good. Just no regions.
return true;
}
// @UE END
regs = (rcLayerRegionMonotone*)rcAlloc(sizeof(rcLayerRegionMonotone)*nregs, RC_ALLOC_TEMP);
if (!regs)
{
ctx->log(RC_LOG_ERROR, "CollectLayerRegionsChunky: Out of memory 'regs' (%d).", nregs);
return false;
}
memset((void*)regs, 0, sizeof(rcLayerRegionMonotone)*nregs);
for (int i = 0; i < nregs; ++i)
{
regs[i].layerId = 0xffff;
regs[i].ymin = RC_SPAN_MAX_HEIGHT;
regs[i].ymax = 0;
}
rcIntArray lregs(64);
// Find region neighbours and overlapping regions.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
lregs.resize(0);
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const unsigned short ri = srcReg[i];
if (ri == 0xffff) continue;
regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
regs[ri].chunkId = (x / chunkSize) + (y / chunkSize) * chunkSize;
// Collect all region layers.
lregs.push(ri);
// Update neighbours
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
const unsigned short rai = srcReg[ai];
if (rai != 0xffff && rai != ri)
addUnique(regs[ri].neis, rai);
}
}
}
// Update overlapping regions.
const int nlregs = lregs.size();
for (int i = 0; i < nlregs-1; ++i)
{
for (int j = i+1; j < nlregs; ++j)
{
if (lregs[i] != lregs[j])
{
rcLayerRegionMonotone& ri = regs[lregs[i]];
rcLayerRegionMonotone& rj = regs[lregs[j]];
addUnique(ri.layers, lregs[j]);
addUnique(rj.layers, lregs[i]);
}
}
}
}
}
return true;
}
static bool SplitAndStoreLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
const rcBorderSize borderSize, const int walkableHeight, //@UE
unsigned short* srcReg, rcLayerRegionMonotone* regs, const int nregs,
rcHeightfieldLayerSet& lset)
{
// Create 2D layers from regions.
unsigned short layerId = 0;
rcIntArray stack(64);
stack.resize(0);
for (int i = 0; i < nregs; ++i)
{
rcLayerRegionMonotone& root = regs[i];
// Skip already visited.
if (root.layerId != 0xffff)
continue;
// Start search.
root.layerId = layerId;
root.base = 1;
stack.push(i);
while (stack.size())
{
// Pop front
rcLayerRegionMonotone& reg = regs[stack[0]];
for (int j = 1; j < stack.size(); ++j)
stack[j - 1] = stack[j];
stack.pop();
const int nneis = (int)reg.neis.size();
for (int j = 0; j < nneis; ++j)
{
const int nei = reg.neis[j];
rcLayerRegionMonotone& regn = regs[nei];
// Skip already visited.
if (regn.layerId != 0xffff)
continue;
// Skip if the neighbour is overlapping root region.
if (root.layers.contains(nei))
continue;
// Skip if the height range would become too large.
const rcSpanUInt ymin = rcMin(root.ymin, regn.ymin);
const rcSpanUInt ymax = rcMax(root.ymax, regn.ymax);
if (((int)ymax - (int)ymin) >= 255)
continue;
// Deepen
stack.push(nei);
// Mark layer id
regn.layerId = layerId;
// Merge current layers to root.
for (int k = 0; k < regn.layers.size(); ++k)
addUnique(root.layers, regn.layers[k]);
root.ymin = rcMin(root.ymin, regn.ymin);
root.ymax = rcMax(root.ymax, regn.ymax);
}
}
layerId++;
}
// Merge non-overlapping regions that are close in height.
const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
for (int i = 0; i < nregs; ++i)
{
rcLayerRegionMonotone& ri = regs[i];
if (!ri.base) continue;
unsigned short newId = ri.layerId;
for (;;)
{
unsigned short oldId = 0xffff;
for (int j = 0; j < nregs; ++j)
{
if (i == j) continue;
rcLayerRegionMonotone& rj = regs[j];
if (!rj.base) continue;
// Skip if the regions are not close to each other.
if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
continue;
// Skip if the height range would become too large.
const rcSpanUInt ymin = rcMin(ri.ymin, rj.ymin);
const rcSpanUInt ymax = rcMax(ri.ymax, rj.ymax);
if (((int)ymax - (int)ymin) >= 255)
continue;
// Make sure that there is no overlap when mergin 'ri' and 'rj'.
bool overlap = false;
// Iterate over all regions which have the same layerId as 'rj'
for (int k = 0; k < nregs; ++k)
{
if (regs[k].layerId != rj.layerId)
continue;
// Check if region 'k' is overlapping region 'ri'
// Index to 'regs' is the same as region id.
if (ri.layers.contains(k))
{
overlap = true;
break;
}
}
// Cannot merge of regions overlap.
if (overlap)
continue;
// Can merge i and j.
oldId = rj.layerId;
break;
}
// Could not find anything to merge with, stop.
if (oldId == 0xffff)
break;
// Merge
for (int j = 0; j < nregs; ++j)
{
rcLayerRegionMonotone& rj = regs[j];
if (rj.layerId == oldId)
{
rj.base = 0;
// Remap layerIds.
rj.layerId = newId;
// Add overlaid layers from 'rj' to 'ri'.
for (int k = 0; k < rj.layers.size(); ++k)
addUnique(ri.layers, rj.layers[k]);
// Update heigh bounds.
ri.ymin = rcMin(ri.ymin, rj.ymin);
ri.ymax = rcMax(ri.ymax, rj.ymax);
}
}
}
}
// Compact layerIds
layerId = 0;
if (nregs < 256)
{
// Compact ids.
unsigned short remap[256];
memset(remap, 0, sizeof(unsigned short)*256);
// Find number of unique regions.
for (int i = 0; i < nregs; ++i)
remap[regs[i].layerId] = 1;
for (int i = 0; i < 256; ++i)
if (remap[i])
remap[i] = layerId++;
// Remap ids.
for (int i = 0; i < nregs; ++i)
regs[i].layerId = remap[regs[i].layerId];
}
else
{
for (int i = 0; i < nregs; ++i)
regs[i].remap = true;
for (int i = 0; i < nregs; ++i)
{
if (!regs[i].remap)
continue;
unsigned short oldId = regs[i].layerId;
unsigned short newId = ++layerId;
for (int j = i; j < nregs; ++j)
{
if (regs[j].remap && regs[j].layerId == oldId)
{
regs[j].layerId = newId;
regs[j].remap = false;
}
}
}
}
// No layers, return empty.
if (layerId == 0)
{
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}
// Create layers.
rcAssert(lset.layers == 0);
const int w = chf.width;
const int h = chf.height;
const int lw = w - (borderSize.low + borderSize.high); //@UE
const int lh = h - (borderSize.low + borderSize.high); //@UE
// Build contracted bbox for layers.
rcReal bmin[3], bmax[3];
rcVcopy(bmin, chf.bmin);
rcVcopy(bmax, chf.bmax);
bmin[0] += borderSize.low*chf.cs; //@UE
bmin[2] += borderSize.low*chf.cs; //@UE
bmax[0] -= borderSize.high*chf.cs; //@UE
bmax[2] -= borderSize.high*chf.cs; //@UE
lset.nlayers = (int)layerId;
lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
if (!lset.layers)
{
ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'layers' (%d).", lset.nlayers);
return false;
}
memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
// Store layers.
for (int i = 0; i < lset.nlayers; ++i)
{
unsigned short curId = (unsigned short)i;
// Allocate memory for the current layer.
rcHeightfieldLayer* layer = &lset.layers[i];
memset(layer, 0, sizeof(rcHeightfieldLayer));
const int gridSize = sizeof(unsigned char)*lw*lh;
const int gridSize2 = sizeof(unsigned short)*lw*lh;
layer->heights = (unsigned short*)rcAlloc(gridSize2, RC_ALLOC_PERM);
if (!layer->heights)
{
ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'heights' (%d).", gridSize2);
return false;
}
memset(layer->heights, 0xff, gridSize2);
layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
if (!layer->areas)
{
ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'areas' (%d).", gridSize);
return false;
}
memset(layer->areas, 0, gridSize);
layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
if (!layer->cons)
{
ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'cons' (%d).", gridSize);
return false;
}
memset(layer->cons, 0, gridSize);
// Find layer height bounds.
rcSpanUInt hmin = 0, hmax = 0;
for (int j = 0; j < nregs; ++j)
{
if (regs[j].base && regs[j].layerId == curId)
{
hmin = regs[j].ymin;
hmax = regs[j].ymax;
}
}
layer->width = lw;
layer->height = lh;
layer->cs = chf.cs;
layer->ch = chf.ch;
// Adjust the bbox to fit the heighfield.
rcVcopy(layer->bmin, bmin);
rcVcopy(layer->bmax, bmax);
layer->bmin[1] = bmin[1] + hmin*chf.ch;
layer->bmax[1] = bmin[1] + hmax*chf.ch;
// Update usable data region.
layer->minx = layer->width;
layer->maxx = 0;
layer->miny = layer->height;
layer->maxy = 0;
// Copy height and area from compact heighfield.
for (int y = 0; y < lh; ++y)
{
for (int x = 0; x < lw; ++x)
{
const int cx = borderSize.low+x; //@UE
const int cy = borderSize.low+y; //@UE
const rcCompactCell& c = chf.cells[cx+cy*w];
for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
{
const rcCompactSpan& s = chf.spans[j];
// Skip unassigned regions.
if (srcReg[j] == 0xffff)
continue;
// Skip of does nto belong to current layer.
unsigned short lid = regs[srcReg[j]].layerId;
if (lid != curId)
continue;
// Update data bounds.
layer->minx = rcMin(layer->minx, x);
layer->maxx = rcMax(layer->maxx, x);
layer->miny = rcMin(layer->miny, y);
layer->maxy = rcMax(layer->maxy, y);
// Store height and area type.
const int idx = x+y*lw;
layer->heights[idx] = (unsigned short)(s.y - hmin);
layer->areas[idx] = chf.areas[j];
// Check connection.
unsigned char portal = 0;
unsigned char con = 0;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
unsigned short alid = srcReg[ai] != 0xffff ? regs[srcReg[ai]].layerId : 0xffff;
// Portal mask
if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
{
portal |= (unsigned char)(1<<dir);
// Update height so that it matches on both sides of the portal.
const rcCompactSpan& as = chf.spans[ai];
if (as.y > hmin)
layer->heights[idx] = rcMax(layer->heights[idx], (unsigned short)(as.y - hmin));
}
// Valid connection mask
if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
{
const int nx = ax - borderSize.low; //@UE
const int ny = ay - borderSize.low; //@UE
if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
{
con |= (unsigned char)(1 << dir);
}
}
}
}
layer->cons[idx] |= (portal << 4) | con;
}
}
}
fixLayerConnections(layer);
if (layer->minx > layer->maxx)
layer->minx = layer->maxx = 0;
if (layer->miny > layer->maxy)
layer->miny = layer->maxy = 0;
}
return true;
}
/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayersMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const rcBorderSize borderSize, const int walkableHeight, //@UE
rcHeightfieldLayerSet& lset)
{
QUICK_SCOPE_CYCLE_COUNTER(STAT_Navigation_BuildHeightfieldLayersMonotone);
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
rcScopedDelete<unsigned short> srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
if (!srcReg)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
return false;
}
memset(srcReg,0xff,sizeof(unsigned short)*chf.spanCount);
rcLayerRegionMonotone* regs = NULL;
int nregs = 0;
const bool bHasRegions = CollectLayerRegionsMonotone(ctx, chf, borderSize, srcReg, regs, nregs);
if (!bHasRegions)
{
// no allocations yet, but just to be safe...
rcFreeLayerRegionMonotones(regs, nregs);
return false;
}
const bool bHasSaved = SplitAndStoreLayerRegions(ctx, chf, borderSize, walkableHeight, srcReg, regs, nregs, lset);
rcFreeLayerRegionMonotones(regs, nregs);
if (!bHasSaved)
{
return false;
}
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}
bool rcBuildHeightfieldLayersChunky(rcContext* ctx, rcCompactHeightfield& chf,
const rcBorderSize borderSize, const int walkableHeight, //@UE
const int chunkSize,
rcHeightfieldLayerSet& lset)
{
QUICK_SCOPE_CYCLE_COUNTER(STAT_Navigation_BuildHeightfieldLayersChunky);
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
rcScopedDelete<unsigned short> srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
if (!srcReg)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
return false;
}
memset(srcReg,0xff,sizeof(unsigned short)*chf.spanCount);
rcLayerRegionMonotone* regs = NULL;
int nregs = 0;
const bool bHasRegions = CollectLayerRegionsChunky(ctx, chf, borderSize, chunkSize, srcReg, regs, nregs);
if (!bHasRegions)
{
// no allocations yet, but just to be safe...
rcFreeLayerRegionMonotones(regs, nregs);
return false;
}
const bool bHasSaved = SplitAndStoreLayerRegions(ctx, chf, borderSize, walkableHeight, srcReg, regs, nregs, lset);
rcFreeLayerRegionMonotones(regs, nregs);
if (!bHasSaved)
{
return false;
}
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}
/// helper function from RecastRegion.cpp, requires distance data in compact height field
bool rcGatherRegionsNoFilter(rcContext* ctx, rcCompactHeightfield& chf, const rcBorderSize borderSize, unsigned short* spanBuf4); //@UE
struct rcLayerRegion
{
rcIntArray layers;
rcIntArray connections;
unsigned short layerId;
rcSpanUInt ymin, ymax;
unsigned char remap : 1;
unsigned char visited : 1;
unsigned char base : 1;
unsigned char hasSpans : 1;
};
static void addUniqueLayerRegion(rcLayerRegion& reg, int n)
{
if (!reg.layers.contains(n))
{
reg.layers.push(n);
}
}
static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg, int x, int y, int i, int dir)
{
const rcCompactSpan& s = chf.spans[i];
unsigned short r = 0;
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = srcReg[ai];
}
if (r == srcReg[i])
return false;
return true;
}
static void walkContour(int x, int y, int i, int dir, rcCompactHeightfield& chf, unsigned short* srcReg, rcIntArray& cont)
{
int startDir = dir;
int starti = i;
const rcCompactSpan& ss = chf.spans[i];
unsigned short curReg = 0;
if (rcGetCon(ss, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir);
curReg = srcReg[ai];
}
cont.push(curReg);
int iter = 0;
while (++iter < 40000)
{
const rcCompactSpan& s = chf.spans[i];
if (isSolidEdge(chf, srcReg, x, y, i, dir))
{
// Choose the edge corner
unsigned short r = 0;
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = srcReg[ai];
}
if (r != curReg)
{
curReg = r;
cont.push(curReg);
}
dir = (dir+1) & 0x3; // Rotate CW
}
else
{
int ni = -1;
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
ni = (int)nc.index + rcGetCon(s, dir);
}
if (ni == -1)
{
// Should not happen.
return;
}
x = nx;
y = ny;
i = ni;
dir = (dir+3) & 0x3; // Rotate CCW
}
if (starti == i && startDir == dir)
{
break;
}
}
// Remove adjacent duplicates.
if (cont.size() > 1)
{
for (int j = 0; j < cont.size(); )
{
int nj = (j+1) % cont.size();
if (cont[j] == cont[nj])
{
for (int k = j; k < cont.size()-1; ++k)
cont[k] = cont[k+1];
cont.pop();
}
else
++j;
}
}
}
/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const rcBorderSize borderSize, const int walkableHeight, //@UE
rcHeightfieldLayerSet& lset)
{
QUICK_SCOPE_CYCLE_COUNTER(STAT_Navigation_BuildHeightfieldLayers);
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
rcScopedDelete<unsigned short> spanBuf4 = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP);
if (!spanBuf4)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'spanBuf4' (%d).", chf.spanCount*4);
return false;
}
ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
unsigned short* srcReg = spanBuf4;
if (!rcGatherRegionsNoFilter(ctx, chf, borderSize, spanBuf4))
return false;
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
const int w = chf.width;
const int h = chf.height;
const int nreg = chf.maxRegions + 1;
rcScopedStructArrayDelete<rcLayerRegion> regions(nreg);
if (!regions)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regions' (%d).", nreg);
return false;
}
// Construct regions
memset((void*)regions, 0, sizeof(rcLayerRegion)*nreg);
for (int i = 0; i < nreg; ++i)
{
regions[i].layerId = (unsigned short)i;
regions[i].ymax = 0;
regions[i].ymin = RC_SPAN_MAX_HEIGHT;
}
// Find region neighbours and overlapping regions.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const unsigned short ri = srcReg[i];
if (ri == 0 || ri >= nreg)
continue;
rcLayerRegion& reg = regions[ri];
reg.ymin = rcMin(reg.ymin, s.y);
reg.ymax = rcMax(reg.ymax, s.y);
reg.hasSpans = true;
// Collect all region layers.
for (int j = (int)c.index; j < ni; ++j)
{
unsigned short nri = srcReg[j];
if (nri == 0 || nri >= nreg)
continue;
if (nri != ri)
{
addUniqueLayerRegion(reg, nri);
}
}
// Have found contour
if (reg.connections.size() > 0)
continue;
// Check if this cell is next to a border.
int ndir = -1;
for (int dir = 0; dir < 4; ++dir)
{
if (isSolidEdge(chf, srcReg, x, y, i, dir))
{
ndir = dir;
break;
}
}
if (ndir != -1)
{
// The cell is at border.
// Walk around the contour to find all the neighbors.
walkContour(x, y, i, ndir, chf, srcReg, reg.connections);
}
}
}
}
// Create 2D layers from regions.
unsigned short layerId = 0;
rcIntArray stack(64);
for (int i = 0; i < nreg; i++)
{
rcLayerRegion& reg = regions[i];
if (reg.visited || !reg.hasSpans)
continue;
reg.layerId = layerId;
reg.visited = true;
reg.base = true;
stack.resize(0);
stack.push(i);
while (stack.size())
{
int ri = stack.pop();
rcLayerRegion& creg = regions[ri];
for (int j = 0; j < creg.connections.size(); j++)
{
const unsigned short nei = (unsigned short)creg.connections[j];
if (nei & RC_BORDER_REG)
continue;
rcLayerRegion& regn = regions[nei];
// Skip already visited.
if (regn.visited)
continue;
// Skip if the neighbor is overlapping root region.
if (reg.layers.contains(nei))
continue;
// Skip if the height range would become too large.
const rcSpanUInt ymin = rcMin(reg.ymin, regn.ymin);
const rcSpanUInt ymax = rcMax(reg.ymax, regn.ymax);
if (((int)ymax - (int)ymin) >= 255)
continue;
// visit
stack.push(nei);
regn.visited = true;
regn.layerId = layerId;
// add layers to root
for (int k = 0; k < regn.layers.size(); k++)
addUniqueLayerRegion(reg, regn.layers[k]);
reg.ymin = rcMin(reg.ymin, regn.ymin);
reg.ymax = rcMax(reg.ymax, regn.ymax);
}
}
layerId++;
}
// Merge non-overlapping regions that are close in height.
const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
for (int i = 0; i < nreg; i++)
{
rcLayerRegion& ri = regions[i];
if (!ri.base) continue;
unsigned short newId = ri.layerId;
for (;;)
{
unsigned short oldId = 0xffff;
for (int j = 0; j < nreg; j++)
{
if (i == j) continue;
rcLayerRegion& rj = regions[j];
if (!rj.base) continue;
// Skip if the regions are not close to each other.
if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
continue;
// Skip if the height range would become too large.
const rcSpanUInt ymin = rcMin(ri.ymin, rj.ymin);
const rcSpanUInt ymax = rcMax(ri.ymax, rj.ymax);
if (((int)ymax - (int)ymin) >= 255)
continue;
// Make sure that there is no overlap when mergin 'ri' and 'rj'.
bool overlap = false;
// Iterate over all regions which have the same layerId as 'rj'
for (int k = 0; k < nreg; ++k)
{
if (regions[k].layerId != rj.layerId)
continue;
// Check if region 'k' is overlapping region 'ri'
// Index to 'regs' is the same as region id.
if (ri.layers.contains(k))
{
overlap = true;
break;
}
}
// Cannot merge of regions overlap.
if (overlap)
continue;
// Can merge i and j.
oldId = rj.layerId;
break;
}
// Could not find anything to merge with, stop.
if (oldId == 0xffff)
break;
// Merge
for (int j = 0; j < nreg; ++j)
{
rcLayerRegion& rj = regions[j];
if (rj.layerId == oldId)
{
rj.base = 0;
// Remap layerIds.
rj.layerId = newId;
// Add overlaid layers from 'rj' to 'ri'.
for (int k = 0; k < rj.layers.size(); ++k)
addUniqueLayerRegion(ri, rj.layers[k]);
// Update height bounds.
ri.ymin = rcMin(ri.ymin, rj.ymin);
ri.ymax = rcMax(ri.ymax, rj.ymax);
}
}
}
}
// Compress layer Ids.
for (int i = 0; i < nreg; ++i)
{
regions[i].remap = regions[i].hasSpans;
if (!regions[i].hasSpans)
{
regions[i].layerId = 0xffff;
}
}
unsigned short maxLayerId = 0;
for (int i = 0; i < nreg; ++i)
{
if (!regions[i].remap)
continue;
unsigned short oldId = regions[i].layerId;
unsigned short newId = maxLayerId;
for (int j = i; j < nreg; ++j)
{
if (regions[j].layerId == oldId)
{
regions[j].layerId = newId;
regions[j].remap = false;
}
}
maxLayerId++;
}
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
if (maxLayerId == 0)
{
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}
// Create layers.
rcAssert(lset.layers == 0);
const int lw = w - (borderSize.low+borderSize.high); //@UE
const int lh = h - (borderSize.low+borderSize.high); //@UE
// Build contracted bbox for layers.
rcReal bmin[3], bmax[3];
rcVcopy(bmin, chf.bmin);
rcVcopy(bmax, chf.bmax);
bmin[0] += borderSize.low*chf.cs; //@UE
bmin[2] += borderSize.low*chf.cs; //@UE
bmax[0] -= borderSize.high*chf.cs; //@UE
bmax[2] -= borderSize.high*chf.cs; //@UE
lset.nlayers = (int)maxLayerId;
lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
if (!lset.layers)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
return false;
}
memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
// Store layers.
for (int i = 0; i < lset.nlayers; ++i)
{
unsigned short curId = (unsigned short)i;
// Allocate memory for the current layer.
rcHeightfieldLayer* layer = &lset.layers[i];
memset(layer, 0, sizeof(rcHeightfieldLayer));
const int gridSize = sizeof(unsigned char)*lw*lh;
const int gridSize2 = sizeof(unsigned short)*lw*lh;
layer->heights = (unsigned short*)rcAlloc(gridSize2, RC_ALLOC_PERM);
if (!layer->heights)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize2);
return false;
}
memset(layer->heights, 0xff, gridSize2);
layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
if (!layer->areas)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
return false;
}
memset(layer->areas, 0, gridSize);
layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
if (!layer->cons)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
return false;
}
memset(layer->cons, 0, gridSize);
// Find layer height bounds.
rcSpanUInt hmin = 0, hmax = 0;
for (int j = 0; j < nreg; ++j)
{
if (regions[j].base && regions[j].layerId == curId)
{
hmin = regions[j].ymin;
hmax = regions[j].ymax;
}
}
layer->width = lw;
layer->height = lh;
layer->cs = chf.cs;
layer->ch = chf.ch;
// Adjust the bbox to fit the heighfield.
rcVcopy(layer->bmin, bmin);
rcVcopy(layer->bmax, bmax);
layer->bmin[1] = bmin[1] + hmin*chf.ch;
layer->bmax[1] = bmin[1] + hmax*chf.ch;
// Update usable data region.
layer->minx = layer->width;
layer->maxx = 0;
layer->miny = layer->height;
layer->maxy = 0;
// Copy height and area from compact heighfield.
for (int y = 0; y < lh; ++y)
{
for (int x = 0; x < lw; ++x)
{
const int cx = borderSize.low+x; //@UE
const int cy = borderSize.low+y; //@UE
const rcCompactCell& c = chf.cells[cx+cy*w];
for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
{
const rcCompactSpan& s = chf.spans[j];
// Skip unassigned regions.
if (srcReg[j] == 0 || srcReg[j] >= nreg)
continue;
// Skip of does not belong to current layer.
unsigned short lid = regions[srcReg[j]].layerId;
if (lid != curId)
continue;
// Update data bounds.
layer->minx = rcMin(layer->minx, x);
layer->maxx = rcMax(layer->maxx, x);
layer->miny = rcMin(layer->miny, y);
layer->maxy = rcMax(layer->maxy, y);
// Store height and area type.
const int idx = x+y*lw;
layer->heights[idx] = (unsigned short)(s.y - hmin);
layer->areas[idx] = chf.areas[j];
// Check connection.
unsigned char portal = 0;
unsigned char con = 0;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax + ay*w].index + rcGetCon(s, dir);
unsigned short alid = (srcReg[ai] < nreg) ? regions[srcReg[ai]].layerId : 0xffff;
// Portal mask
if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
{
portal |= (unsigned char)(1 << dir);
// Update height so that it matches on both sides of the portal.
const rcCompactSpan& as = chf.spans[ai];
if (as.y > hmin)
layer->heights[idx] = rcMax(layer->heights[idx], (unsigned short)(as.y - hmin));
}
// Valid connection mask
if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
{
const int nx = ax - borderSize.low; //@UE
const int ny = ay - borderSize.low; //@UE
if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
{
con |= (unsigned char)(1 << dir);
}
}
}
}
layer->cons[idx] = (portal << 4) | con;
}
}
}
fixLayerConnections(layer);
if (layer->minx > layer->maxx)
layer->minx = layer->maxx = 0;
if (layer->miny > layer->maxy)
layer->miny = layer->maxy = 0;
}
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}