1595 lines
37 KiB
C++
1595 lines
37 KiB
C++
// Copyright Epic Games, Inc. All Rights Reserved.
|
|
// Modified version of Recast/Detour's source file
|
|
|
|
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include "CoreMinimal.h"
|
|
#include "Detour/DetourCommon.h"
|
|
#include "Detour/DetourAssert.h"
|
|
#include "Detour/DetourAlloc.h"
|
|
#include "DetourTileCache/DetourTileCacheBuilder.h"
|
|
#define _USE_MATH_DEFINES
|
|
|
|
inline bool isConnected(const dtTileCacheLayer& layer, const int idx, const int dir)
|
|
{
|
|
return (layer.cons[idx] & (1 << dir)) != 0;
|
|
}
|
|
|
|
static void calculateDistanceField(const dtTileCacheLayer& layer, unsigned short* src, unsigned short& maxDist)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
// Init distance and points.
|
|
memset(src, 0xff, w*h*sizeof(unsigned short));
|
|
|
|
// Mark boundary cells.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i = x+y*w;
|
|
const unsigned char area = layer.areas[i];
|
|
if (area == DT_TILECACHE_NULL_AREA)
|
|
{
|
|
src[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
int nc = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
if (area == layer.areas[ai])
|
|
{
|
|
nc++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nc != 4)
|
|
{
|
|
src[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Pass 1
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i = x+y*w;
|
|
if (layer.areas[i] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
const int ax = x + getDirOffsetX(0);
|
|
const int ay = y + getDirOffsetY(0);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, 0))
|
|
{
|
|
// (-1,0)
|
|
if (src[ai]+2 < src[i])
|
|
src[i] = src[ai]+2;
|
|
|
|
const int aax = ax + getDirOffsetX(3);
|
|
const int aay = ay + getDirOffsetY(3);
|
|
const int aai = aax+aay*w;
|
|
if (aax >= 0 && aax < w && aay >= 0 && aay < h && isConnected(layer, ai, 3))
|
|
{
|
|
// (-1,-1)
|
|
if (src[aai]+3 < src[i])
|
|
src[i] = src[aai]+3;
|
|
}
|
|
}
|
|
|
|
const int ax2 = x + getDirOffsetX(3);
|
|
const int ay2 = y + getDirOffsetY(3);
|
|
const int ai2 = ax2+ay2*w;
|
|
if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, i, 3))
|
|
{
|
|
// (0,-1)
|
|
if (src[ai2]+2 < src[i])
|
|
src[i] = src[ai2]+2;
|
|
|
|
const int aax2 = ax2 + getDirOffsetX(2);
|
|
const int aay2 = ay2 + getDirOffsetY(2);
|
|
const int aai2 = aax2+aay2*w;
|
|
if (aax2 >= 0 && aax2 < w && aay2 >= 0 && aay2 < h && isConnected(layer, ai2, 2))
|
|
{
|
|
// (1,-1)
|
|
if (src[aai2]+3 < src[i])
|
|
src[i] = src[aai2]+3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 2
|
|
for (int y = h-1; y >= 0; --y)
|
|
{
|
|
for (int x = w-1; x >= 0; --x)
|
|
{
|
|
const int i = x+y*w;
|
|
if (layer.areas[i] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
const int ax = x + getDirOffsetX(2);
|
|
const int ay = y + getDirOffsetY(2);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, 2))
|
|
{
|
|
// (1,0)
|
|
if (src[ai]+2 < src[i])
|
|
src[i] = src[ai]+2;
|
|
|
|
const int aax = ax + getDirOffsetX(1);
|
|
const int aay = ay + getDirOffsetY(1);
|
|
const int aai = aax+aay*w;
|
|
if (aax >= 0 && aax < w && aay >= 0 && aay < h && isConnected(layer, ai, 1))
|
|
{
|
|
// (1,1)
|
|
if (src[aai]+3 < src[i])
|
|
src[i] = src[aai]+3;
|
|
}
|
|
}
|
|
|
|
const int ax2 = x + getDirOffsetX(1);
|
|
const int ay2 = y + getDirOffsetY(1);
|
|
const int ai2 = ax2+ay2*w;
|
|
if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, i, 1))
|
|
{
|
|
// (0,1)
|
|
if (src[ai2]+2 < src[i])
|
|
src[i] = src[ai2]+2;
|
|
|
|
const int aax2 = ax2 + getDirOffsetX(0);
|
|
const int aay2 = ay2 + getDirOffsetY(0);
|
|
const int aai2 = aax2+aay2*w;
|
|
if (aax2 >= 0 && aax2 < w && aay2 >= 0 && aay2 < h && isConnected(layer, ai2, 0))
|
|
{
|
|
// (-1,1)
|
|
if (src[aai2]+3 < src[i])
|
|
src[i] = src[aai2]+3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// calc max distance
|
|
maxDist = 0;
|
|
for (int i = w*h -1; i >= 0; i--)
|
|
{
|
|
maxDist = dtMax(src[i], maxDist);
|
|
}
|
|
}
|
|
|
|
static unsigned short* boxBlur(dtTileCacheLayer& layer, int thr, unsigned short* src, unsigned short* dst)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
thr *= 2;
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i = x+y*w;
|
|
|
|
const unsigned short cd = src[i];
|
|
if (cd <= thr)
|
|
{
|
|
dst[i] = cd;
|
|
continue;
|
|
}
|
|
|
|
int d = (int)cd;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ni = ax+ay*w;
|
|
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
d += (int)src[ni];
|
|
|
|
const int dir2 = (dir+1) & 0x3;
|
|
const int ax2 = ax + getDirOffsetX(dir2);
|
|
const int ay2 = ay + getDirOffsetY(dir2);
|
|
const int ni2 = ax2+ay2*w;
|
|
if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, ni, dir2))
|
|
{
|
|
d += (int)src[ni2];
|
|
}
|
|
else
|
|
{
|
|
d += cd;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
d += cd*2;
|
|
}
|
|
}
|
|
|
|
dst[i] = (unsigned short)((d+5)/9);
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
dtStatus dtBuildTileCacheDistanceField(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, dtTileCacheDistanceField& dfield)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
dfield.data = (unsigned short*)alloc->alloc(w*h*sizeof(unsigned short));
|
|
if (!dfield.data)
|
|
{
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
|
|
dtTileCacheDistanceField tmpField;
|
|
tmpField.data = (unsigned short*)alloc->alloc(w*h*sizeof(unsigned short));
|
|
if (!tmpField.data)
|
|
{
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
|
|
calculateDistanceField(layer, dfield.data, dfield.maxDist);
|
|
if (boxBlur(layer, 1, dfield.data, tmpField.data) != dfield.data)
|
|
{
|
|
dtSwap(dfield.data, tmpField.data);
|
|
}
|
|
|
|
alloc->free(tmpField.data);
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
static unsigned short* expandRegions(int maxIter, unsigned short level,
|
|
dtTileCacheLayer& layer, dtTileCacheDistanceField& dfield,
|
|
unsigned short* srcReg, unsigned short* srcDist,
|
|
unsigned short* dstReg, unsigned short* dstDist,
|
|
dtIntArray& stack)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
// Find cells revealed by the raised level.
|
|
stack.resize(0);
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i = x+y*w;
|
|
if (dfield.data[i] >= level && srcReg[i] == 0 && layer.areas[i] != DT_TILECACHE_NULL_AREA)
|
|
{
|
|
stack.push(x);
|
|
stack.push(y);
|
|
stack.push(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
int iter = 0;
|
|
while (stack.size() > 0)
|
|
{
|
|
int failed = 0;
|
|
|
|
memcpy(dstReg, srcReg, sizeof(unsigned short)*w*h);
|
|
memcpy(dstDist, srcDist, sizeof(unsigned short)*w*h);
|
|
|
|
for (int j = 0; j < stack.size(); j += 3)
|
|
{
|
|
int x = stack[j+0];
|
|
int y = stack[j+1];
|
|
int i = stack[j+2];
|
|
if (i < 0)
|
|
{
|
|
failed++;
|
|
continue;
|
|
}
|
|
|
|
unsigned short r = srcReg[i];
|
|
unsigned short d2 = 0xffff;
|
|
const unsigned char area = layer.areas[i];
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
if (layer.areas[ai] != area) continue;
|
|
if (srcReg[ai] > 0)
|
|
{
|
|
if ((int)srcDist[ai]+2 < (int)d2)
|
|
{
|
|
r = srcReg[ai];
|
|
d2 = srcDist[ai]+2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (r)
|
|
{
|
|
stack[j+2] = -1; // mark as used
|
|
dstReg[i] = r;
|
|
dstDist[i] = d2;
|
|
}
|
|
else
|
|
{
|
|
failed++;
|
|
}
|
|
}
|
|
|
|
// rcSwap source and dest.
|
|
dtSwap(srcReg, dstReg);
|
|
dtSwap(srcDist, dstDist);
|
|
|
|
if (failed*3 == stack.size())
|
|
break;
|
|
|
|
if (level > 0)
|
|
{
|
|
++iter;
|
|
if (iter >= maxIter)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return srcReg;
|
|
}
|
|
|
|
static bool floodRegion(int x, int y, int i, unsigned short level, unsigned short r,
|
|
dtTileCacheLayer& layer, dtTileCacheDistanceField& dfield, unsigned short* srcReg, unsigned short* srcDist, dtIntArray& stack)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
const unsigned char area = layer.areas[i];
|
|
|
|
// Flood fill mark region.
|
|
stack.resize(0);
|
|
stack.push((int)x);
|
|
stack.push((int)y);
|
|
stack.push((int)i);
|
|
srcReg[i] = r;
|
|
srcDist[i] = 0;
|
|
|
|
unsigned short lev = level >= 2 ? level-2 : 0;
|
|
int count = 0;
|
|
|
|
while (stack.size() > 0)
|
|
{
|
|
int ci = stack.pop();
|
|
int cy = stack.pop();
|
|
int cx = stack.pop();
|
|
|
|
// Check if any of the neighbours already have a valid region set.
|
|
unsigned short ar = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const int ax = cx + getDirOffsetX(dir);
|
|
const int ay = cy + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
|
|
// 8 connected
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
if (layer.areas[ai] != area)
|
|
continue;
|
|
unsigned short nr = srcReg[ai];
|
|
if (nr != 0 && nr != r)
|
|
ar = nr;
|
|
|
|
const int dir2 = (dir+1) & 0x3;
|
|
const int ax2 = ax + getDirOffsetX(dir2);
|
|
const int ay2 = ay + getDirOffsetY(dir2);
|
|
const int ai2 = ax2+ay2*w;
|
|
if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, ai, dir2))
|
|
{
|
|
if (layer.areas[ai2] != area)
|
|
continue;
|
|
unsigned short nr2 = srcReg[ai2];
|
|
if (nr2 != 0 && nr2 != r)
|
|
ar = nr2;
|
|
}
|
|
}
|
|
}
|
|
if (ar != 0)
|
|
{
|
|
srcReg[ci] = 0;
|
|
continue;
|
|
}
|
|
count++;
|
|
|
|
// Expand neighbours.
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const int ax = cx + getDirOffsetX(dir);
|
|
const int ay = cy + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
if (layer.areas[ai] != area)
|
|
continue;
|
|
if (dfield.data[ai] >= lev && srcReg[ai] == 0)
|
|
{
|
|
srcReg[ai] = r;
|
|
srcDist[ai] = 0;
|
|
stack.push(ax);
|
|
stack.push(ay);
|
|
stack.push(ai);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return count > 0;
|
|
}
|
|
|
|
struct dtLayerRegion
|
|
{
|
|
inline dtLayerRegion(unsigned short i) :
|
|
cellCount(0),
|
|
id(i),
|
|
areaType(0),
|
|
remap(false),
|
|
visited(false),
|
|
border(false)
|
|
{}
|
|
|
|
dtIntArray connections;
|
|
int cellCount; // Number of spans belonging to this region
|
|
unsigned short id; // ID of the region
|
|
unsigned char areaType; // Are type.
|
|
unsigned char remap : 1;
|
|
unsigned char visited : 1;
|
|
unsigned char border : 1;
|
|
|
|
dtLayerRegion& operator=(const dtLayerRegion& src)
|
|
{
|
|
this->cellCount = src.cellCount;
|
|
this->id = src.id;
|
|
this->areaType = src.areaType;
|
|
this->remap = src.remap;
|
|
this->visited = src.visited;
|
|
this->border = src.border;
|
|
this->connections.copy(src.connections);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
static void removeAdjacentNeighbours(dtLayerRegion& reg)
|
|
{
|
|
// Remove adjacent duplicates.
|
|
for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; )
|
|
{
|
|
int ni = (i+1) % reg.connections.size();
|
|
if (reg.connections[i] == reg.connections[ni])
|
|
{
|
|
// Remove duplicate
|
|
for (int j = i; j < reg.connections.size()-1; ++j)
|
|
reg.connections[j] = reg.connections[j+1];
|
|
reg.connections.pop();
|
|
}
|
|
else
|
|
++i;
|
|
}
|
|
}
|
|
|
|
static void replaceNeighbour(dtLayerRegion& reg, unsigned short oldId, unsigned short newId)
|
|
{
|
|
bool neiChanged = false;
|
|
for (int i = 0; i < reg.connections.size(); ++i)
|
|
{
|
|
if (reg.connections[i] == oldId)
|
|
{
|
|
reg.connections[i] = newId;
|
|
neiChanged = true;
|
|
}
|
|
}
|
|
if (neiChanged)
|
|
removeAdjacentNeighbours(reg);
|
|
}
|
|
|
|
static bool canMergeWithRegion(const dtLayerRegion& rega, const dtLayerRegion& regb)
|
|
{
|
|
if (rega.areaType != regb.areaType)
|
|
return false;
|
|
int n = 0;
|
|
for (int i = 0; i < rega.connections.size(); ++i)
|
|
{
|
|
if (rega.connections[i] == regb.id)
|
|
n++;
|
|
}
|
|
if (n > 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool mergeRegions(dtLayerRegion& rega, dtLayerRegion& regb)
|
|
{
|
|
unsigned short aid = rega.id;
|
|
unsigned short bid = regb.id;
|
|
|
|
// Duplicate current neighbourhood.
|
|
dtIntArray acon;
|
|
acon.resize(rega.connections.size());
|
|
for (int i = 0; i < rega.connections.size(); ++i)
|
|
acon[i] = rega.connections[i];
|
|
dtIntArray& bcon = regb.connections;
|
|
|
|
// Find insertion point on A.
|
|
int insa = -1;
|
|
for (int i = 0; i < acon.size(); ++i)
|
|
{
|
|
if (acon[i] == bid)
|
|
{
|
|
insa = i;
|
|
break;
|
|
}
|
|
}
|
|
if (insa == -1)
|
|
return false;
|
|
|
|
// Find insertion point on B.
|
|
int insb = -1;
|
|
for (int i = 0; i < bcon.size(); ++i)
|
|
{
|
|
if (bcon[i] == aid)
|
|
{
|
|
insb = i;
|
|
break;
|
|
}
|
|
}
|
|
if (insb == -1)
|
|
return false;
|
|
|
|
// Merge neighbours.
|
|
rega.connections.resize(0);
|
|
for (int i = 0, ni = acon.size(); i < ni-1; ++i)
|
|
rega.connections.push(acon[(insa+1+i) % ni]);
|
|
|
|
for (int i = 0, ni = bcon.size(); i < ni-1; ++i)
|
|
rega.connections.push(bcon[(insb+1+i) % ni]);
|
|
|
|
removeAdjacentNeighbours(rega);
|
|
|
|
rega.cellCount += regb.cellCount;
|
|
regb.cellCount = 0;
|
|
|
|
rega.border |= regb.border;
|
|
regb.border = 0;
|
|
|
|
regb.connections.resize(0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isSolidEdge(dtTileCacheLayer& layer, unsigned short* srcReg,
|
|
int x, int y, int i, int dir)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
unsigned short r = 0;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
r = srcReg[ai];
|
|
}
|
|
|
|
return (r != srcReg[i]);
|
|
}
|
|
|
|
static void walkContour(int x, int y, int i, int dir,
|
|
dtTileCacheLayer& layer, unsigned short* srcReg, dtIntArray& cont)
|
|
{
|
|
int startDir = dir;
|
|
int starti = i;
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
unsigned short curReg = 0;
|
|
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir))
|
|
{
|
|
curReg = srcReg[ai];
|
|
}
|
|
}
|
|
|
|
cont.push(curReg);
|
|
|
|
int iter = 0;
|
|
while (++iter < 40000)
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
const int ai = ax+ay*w;
|
|
const bool bConnected = (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir));
|
|
unsigned short r = 0;
|
|
if (bConnected)
|
|
{
|
|
r = srcReg[ai];
|
|
}
|
|
|
|
if (r != srcReg[i])
|
|
{
|
|
// Choose the edge corner
|
|
if (r != curReg)
|
|
{
|
|
curReg = r;
|
|
cont.push(curReg);
|
|
}
|
|
|
|
dir = (dir+1) & 0x3; // Rotate CW
|
|
}
|
|
else
|
|
{
|
|
int ni = -1;
|
|
if (bConnected)
|
|
{
|
|
ni = ai;
|
|
}
|
|
|
|
if (ni == -1)
|
|
{
|
|
// Should not happen.
|
|
return;
|
|
}
|
|
x = ax;
|
|
y = ay;
|
|
i = ni;
|
|
dir = (dir+3) & 0x3; // Rotate CCW
|
|
}
|
|
|
|
if (starti == i && startDir == dir)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Remove adjacent duplicates.
|
|
if (cont.size() > 1)
|
|
{
|
|
for (int j = 0; j < cont.size(); )
|
|
{
|
|
int nj = (j+1) % cont.size();
|
|
if (cont[j] == cont[nj])
|
|
{
|
|
for (int k = j; k < cont.size()-1; ++k)
|
|
cont[k] = cont[k+1];
|
|
cont.pop();
|
|
}
|
|
else
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
|
|
static dtStatus filterSmallRegions(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, int minRegionArea, int mergeRegionSize,
|
|
unsigned short& maxRegionId, unsigned short* srcReg)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
const int nreg = maxRegionId+1;
|
|
dtFixedArray<dtLayerRegion> regions(alloc, nreg);
|
|
if (!regions)
|
|
{
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// Construct regions
|
|
regions.set(0);
|
|
for (int i = 0; i < nreg; ++i)
|
|
regions[i] = dtLayerRegion((unsigned short)i);
|
|
|
|
// Find edge of a region and find connections around the contour.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
const bool borderY = (y == 0) || (y == (h - 1));
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i = x+y*w;
|
|
unsigned short r = srcReg[i];
|
|
|
|
if (r == DT_TILECACHE_NULL_AREA || r >= nreg)
|
|
continue;
|
|
|
|
dtLayerRegion& reg = regions[r];
|
|
reg.cellCount++;
|
|
reg.border |= borderY || (x == 0) || (x == (w - 1));
|
|
|
|
// Have found contour
|
|
if (reg.connections.size() > 0)
|
|
continue;
|
|
|
|
reg.areaType = layer.areas[i];
|
|
|
|
// Check if this cell is next to a border.
|
|
int ndir = -1;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (isSolidEdge(layer, srcReg, x, y, i, dir))
|
|
{
|
|
ndir = dir;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ndir != -1)
|
|
{
|
|
// The cell is at border.
|
|
// Walk around the contour to find all the neighbours.
|
|
walkContour(x, y, i, ndir, layer, srcReg, reg.connections);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove too small regions.
|
|
dtIntArray stack(32);
|
|
dtIntArray trace(32);
|
|
for (int i = 0; i < nreg; ++i)
|
|
{
|
|
dtLayerRegion& reg = regions[i];
|
|
if (reg.id == 0)
|
|
continue;
|
|
if (reg.cellCount == 0)
|
|
continue;
|
|
if (reg.visited)
|
|
continue;
|
|
|
|
// Count the total size of all the connected regions.
|
|
// Also keep track of the regions connects to a tile border.
|
|
bool connectsToBorder = false;
|
|
int cellCount = 0;
|
|
stack.resize(0);
|
|
trace.resize(0);
|
|
|
|
reg.visited = true;
|
|
stack.push(i);
|
|
|
|
while (stack.size())
|
|
{
|
|
// Pop
|
|
int ri = stack.pop();
|
|
|
|
dtLayerRegion& creg = regions[ri];
|
|
|
|
connectsToBorder |= creg.border;
|
|
cellCount += creg.cellCount;
|
|
trace.push(ri);
|
|
|
|
for (int j = 0; j < creg.connections.size(); ++j)
|
|
{
|
|
dtLayerRegion& neireg = regions[creg.connections[j]];
|
|
if (neireg.visited)
|
|
continue;
|
|
if (neireg.id == 0)
|
|
continue;
|
|
// Visit
|
|
stack.push(neireg.id);
|
|
neireg.visited = true;
|
|
}
|
|
}
|
|
|
|
// If the accumulated regions size is too small, remove it.
|
|
// Do not remove areas which connect to tile borders
|
|
// as their size cannot be estimated correctly and removing them
|
|
// can potentially remove necessary areas.
|
|
if (cellCount < minRegionArea && !connectsToBorder)
|
|
{
|
|
// Kill all visited regions.
|
|
for (int j = 0; j < trace.size(); ++j)
|
|
{
|
|
regions[trace[j]].cellCount = 0;
|
|
regions[trace[j]].id = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge too small regions to neighbour regions.
|
|
int mergeCount = 0 ;
|
|
do
|
|
{
|
|
mergeCount = 0;
|
|
for (int i = 0; i < nreg; ++i)
|
|
{
|
|
dtLayerRegion& reg = regions[i];
|
|
if (reg.id == 0)
|
|
continue;
|
|
if (reg.cellCount == 0)
|
|
continue;
|
|
|
|
// Check to see if the region should be merged.
|
|
if (reg.cellCount > mergeRegionSize && reg.border)
|
|
continue;
|
|
|
|
// Small region with more than 1 connection.
|
|
// Or region which is not connected to a border at all.
|
|
// Find smallest neighbour region that connects to this one.
|
|
int smallest = 0xfffffff;
|
|
unsigned short mergeId = reg.id;
|
|
for (int j = 0; j < reg.connections.size(); ++j)
|
|
{
|
|
dtLayerRegion& mreg = regions[reg.connections[j]];
|
|
if (mreg.id == 0) continue;
|
|
if (mreg.cellCount < smallest &&
|
|
canMergeWithRegion(reg, mreg) &&
|
|
canMergeWithRegion(mreg, reg))
|
|
{
|
|
smallest = mreg.cellCount;
|
|
mergeId = mreg.id;
|
|
}
|
|
}
|
|
// Found new id.
|
|
if (mergeId != reg.id)
|
|
{
|
|
unsigned short oldId = reg.id;
|
|
dtLayerRegion& target = regions[mergeId];
|
|
|
|
// Merge neighbours.
|
|
if (mergeRegions(target, reg))
|
|
{
|
|
// Fixup regions pointing to current region.
|
|
for (int j = 0; j < nreg; ++j)
|
|
{
|
|
if (regions[j].id == 0) continue;
|
|
// If another region was already merged into current region
|
|
// change the nid of the previous region too.
|
|
if (regions[j].id == oldId)
|
|
regions[j].id = mergeId;
|
|
// Replace the current region with the new one if the
|
|
// current regions is neighbour.
|
|
replaceNeighbour(regions[j], oldId, mergeId);
|
|
}
|
|
mergeCount++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (mergeCount > 0);
|
|
|
|
// Compress region Ids.
|
|
for (int i = 0; i < nreg; ++i)
|
|
{
|
|
regions[i].remap = false;
|
|
if (regions[i].id == DT_TILECACHE_NULL_AREA) continue; // Skip nil regions.
|
|
regions[i].remap = true;
|
|
}
|
|
|
|
unsigned short regIdGen = 0;
|
|
for (int i = 0; i < nreg; ++i)
|
|
{
|
|
if (!regions[i].remap)
|
|
continue;
|
|
unsigned short oldId = regions[i].id;
|
|
unsigned short newId = ++regIdGen;
|
|
for (int j = i; j < nreg; ++j)
|
|
{
|
|
if (regions[j].id == oldId)
|
|
{
|
|
regions[j].id = newId;
|
|
regions[j].remap = false;
|
|
}
|
|
}
|
|
}
|
|
maxRegionId = regIdGen;
|
|
|
|
// Remap regions.
|
|
for (int i = w*h-1; i >= 0; i--)
|
|
{
|
|
srcReg[i] = regions[srcReg[i]].id;
|
|
}
|
|
|
|
for (int i = 0; i < nreg; ++i)
|
|
regions[i].~dtLayerRegion();
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc,
|
|
const int minRegionArea, const int mergeRegionArea,
|
|
dtTileCacheLayer& layer, dtTileCacheDistanceField dfield)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const int size = w*h;
|
|
|
|
dtFixedArray<unsigned short> buf(alloc, size*4);
|
|
if (!buf)
|
|
{
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
|
|
dtIntArray stack(1024);
|
|
dtIntArray visited(1024);
|
|
|
|
unsigned short* srcReg = buf;
|
|
unsigned short* srcDist = buf+size;
|
|
unsigned short* dstReg = buf+size*2;
|
|
unsigned short* dstDist = buf+size*3;
|
|
|
|
memset(srcReg, 0, sizeof(unsigned short)*size);
|
|
memset(srcDist, 0, sizeof(unsigned short)*size);
|
|
|
|
unsigned short regionId = 1;
|
|
unsigned short level = (dfield.maxDist+1) & ~1;
|
|
|
|
// TODO: Figure better formula, expandIters defines how much the
|
|
// watershed "overflows" and simplifies the regions. Tying it to
|
|
// agent radius was usually good indication how greedy it could be.
|
|
// const int expandIters = 4 + walkableRadius * 2;
|
|
const int expandIters = 8;
|
|
|
|
while (level > 0)
|
|
{
|
|
level = level >= 2 ? level-2 : 0;
|
|
|
|
// Expand current regions until no empty connected cells found.
|
|
if (expandRegions(expandIters, level, layer, dfield, srcReg, srcDist, dstReg, dstDist, stack) != srcReg)
|
|
{
|
|
dtSwap(srcReg, dstReg);
|
|
dtSwap(srcDist, dstDist);
|
|
}
|
|
|
|
// Mark new regions with IDs.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int i=x+y*w;
|
|
if (dfield.data[i] < level || srcReg[i] != 0 || layer.areas[i] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
if (floodRegion(x, y, i, level, regionId, layer, dfield, srcReg, srcDist, stack))
|
|
regionId++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Expand current regions until no empty connected cells found.
|
|
if (expandRegions(expandIters*8, 0, layer, dfield, srcReg, srcDist, dstReg, dstDist, stack) != srcReg)
|
|
{
|
|
dtSwap(srcReg, dstReg);
|
|
dtSwap(srcDist, dstDist);
|
|
}
|
|
|
|
dtStatus status = filterSmallRegions(alloc, layer, minRegionArea, mergeRegionArea, regionId, srcReg);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
return status;
|
|
}
|
|
|
|
// Write the result out.
|
|
memcpy(layer.regs, srcReg, sizeof(unsigned short)*size);
|
|
layer.regCount = regionId;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
struct dtLayerSweepSpan
|
|
{
|
|
unsigned short ns; // number samples
|
|
unsigned short id; // region id
|
|
unsigned short nei; // neighbour id
|
|
};
|
|
|
|
struct dtLayerMonotoneRegion
|
|
{
|
|
dtIntArray neis;
|
|
int area;
|
|
int chunkId;
|
|
unsigned short regId;
|
|
unsigned char areaId;
|
|
unsigned char remap : 1;
|
|
unsigned char border : 1;
|
|
unsigned char visited : 1;
|
|
};
|
|
|
|
static void addUniqueLast(dtIntArray& a, unsigned short v)
|
|
{
|
|
if (!a.contains(v))
|
|
{
|
|
a.push(v);
|
|
}
|
|
}
|
|
|
|
static bool canMerge(unsigned short oldRegId, unsigned short newRegId, const dtLayerMonotoneRegion* regs, const int nregs)
|
|
{
|
|
int count = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
const dtLayerMonotoneRegion& reg = regs[i];
|
|
if (reg.regId != oldRegId) continue;
|
|
const int nnei = reg.neis.size();
|
|
for (int j = 0; j < nnei; ++j)
|
|
{
|
|
if (regs[reg.neis[j]].regId == newRegId)
|
|
count++;
|
|
}
|
|
}
|
|
return count == 1;
|
|
}
|
|
|
|
static dtStatus CollectRegionsMonotone(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, dtLayerMonotoneRegion*& regs, int& nregs)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
memset(layer.regs,0xff,sizeof(unsigned short)*w*h);
|
|
|
|
const int nsweeps = w;
|
|
dtFixedArray<dtLayerSweepSpan> sweeps(alloc, nsweeps);
|
|
if (!sweeps)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps);
|
|
|
|
// Partition walkable area into monotone regions.
|
|
dtIntArray prevCount(256);
|
|
unsigned short regId = 0;
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
prevCount.resize(regId+1);
|
|
memset(&prevCount[0],0,sizeof(int)*regId);
|
|
unsigned short sweepId = 0;
|
|
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x + y*w;
|
|
if (layer.areas[idx] == DT_TILECACHE_NULL_AREA) continue;
|
|
|
|
unsigned short sid = 0xffff;
|
|
|
|
// -x
|
|
if (x > 0 && isConnected(layer, idx, 0))
|
|
{
|
|
const int xidx = (x-1)+y*w;
|
|
if (layer.regs[xidx] != 0xffff && layer.areas[xidx] == layer.areas[idx])
|
|
sid = layer.regs[xidx];
|
|
}
|
|
|
|
if (sid == 0xffff)
|
|
{
|
|
sid = sweepId++;
|
|
sweeps[sid].nei = 0xffff;
|
|
sweeps[sid].ns = 0;
|
|
}
|
|
|
|
// -y
|
|
if (y > 0 && isConnected(layer, idx, 3))
|
|
{
|
|
const int yidx = x+(y-1)*w;
|
|
const unsigned short nr = layer.regs[yidx];
|
|
if (nr != 0xffff && layer.areas[yidx] == layer.areas[idx])
|
|
{
|
|
// Set neighbour when first valid neighbour is encoutered.
|
|
if (sweeps[sid].ns == 0)
|
|
sweeps[sid].nei = nr;
|
|
|
|
if (sweeps[sid].nei == nr)
|
|
{
|
|
// Update existing neighbour
|
|
sweeps[sid].ns++;
|
|
prevCount[nr]++;
|
|
}
|
|
else
|
|
{
|
|
// This is hit if there is nore than one neighbour.
|
|
// Invalidate the neighbour.
|
|
sweeps[sid].nei = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
layer.regs[idx] = sid;
|
|
}
|
|
|
|
// Create unique ID.
|
|
for (int i = 0; i < sweepId; ++i)
|
|
{
|
|
// If the neighbour is set and there is only one continuous connection to it,
|
|
// the sweep will be merged with the previous one, else new region is created.
|
|
if (sweeps[i].nei != 0xffff && prevCount[sweeps[i].nei] == sweeps[i].ns)
|
|
{
|
|
sweeps[i].id = sweeps[i].nei;
|
|
}
|
|
else
|
|
{
|
|
sweeps[i].id = regId++;
|
|
}
|
|
}
|
|
|
|
// Remap local sweep ids to region ids.
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
if (layer.regs[idx] != 0xffff)
|
|
{
|
|
layer.regs[idx] = sweeps[layer.regs[idx]].id;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocate and init layer regions.
|
|
nregs = (int)regId;
|
|
|
|
// @UE BEGIN: special handling of "no regions"
|
|
if (nregs == 0)
|
|
{
|
|
regs = 0;
|
|
// treating this as success because we successfully generated 0 regions,
|
|
// no issues occurred, everything was good. Just no regions.
|
|
return DT_SUCCESS;
|
|
}
|
|
// @UE END
|
|
|
|
regs = (dtLayerMonotoneRegion*)alloc->alloc(sizeof(dtLayerMonotoneRegion) * nregs);
|
|
if (!regs)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset((void*)regs, 0, sizeof(dtLayerMonotoneRegion)*nregs);
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
regs[i].regId = 0xffff;
|
|
regs[i].neis.resize(16);
|
|
regs[i].neis.resize(0);
|
|
}
|
|
|
|
// Find region neighbours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
const bool borderY = (y == 0) || (y == (h - 1));
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned short ri = layer.regs[idx];
|
|
if (ri == 0xffff)
|
|
continue;
|
|
|
|
// Update area.
|
|
regs[ri].area++;
|
|
regs[ri].areaId = layer.areas[idx];
|
|
regs[ri].border |= borderY || (x == 0) || (x == (w - 1));
|
|
|
|
// Update neighbours
|
|
if (y > 0 && isConnected(layer, idx, 3))
|
|
{
|
|
const int ymi = x+(y-1)*w;
|
|
const unsigned short rai = layer.regs[ymi];
|
|
if (rai != 0xffff && rai != ri)
|
|
{
|
|
addUniqueLast(regs[ri].neis, rai);
|
|
addUniqueLast(regs[rai].neis, ri);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
static dtStatus CollectRegionsChunky(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, int chunkSize, dtLayerMonotoneRegion*& regs, int& nregs)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
memset(layer.regs,0xff,sizeof(unsigned short)*w*h);
|
|
|
|
const int nsweeps = w;
|
|
dtFixedArray<dtLayerSweepSpan> sweeps(alloc, nsweeps);
|
|
if (!sweeps)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps);
|
|
|
|
// Partition walkable area into monotone regions.
|
|
dtIntArray prevCount(256);
|
|
unsigned short regId = 0;
|
|
|
|
const int numXChunks = dtMax(1, w / chunkSize); // Division floors, remainder is put to the last chunk.
|
|
const int numYChunks = dtMax(1, h / chunkSize);
|
|
|
|
for (int chunkx = 0; chunkx < numXChunks; chunkx++)
|
|
{
|
|
const bool lastXChunk = chunkx == (numXChunks - 1);
|
|
const int minx = chunkx * chunkSize;
|
|
const int maxx = lastXChunk ? w : (minx + chunkSize);
|
|
|
|
for (int chunky = 0; chunky < numYChunks; chunky++)
|
|
{
|
|
const bool lastYChunk = chunky == (numYChunks - 1);
|
|
const int miny = chunky * chunkSize;
|
|
const int maxy = lastYChunk ? h : (miny + chunkSize);
|
|
|
|
for (int y = miny; y < maxy; ++y)
|
|
{
|
|
prevCount.resize(regId+1);
|
|
memset(&prevCount[0],0,sizeof(int)*regId);
|
|
unsigned short sweepId = 0;
|
|
|
|
for (int x = minx; x < maxx; ++x)
|
|
{
|
|
const int idx = x + y*w;
|
|
if (layer.areas[idx] == DT_TILECACHE_NULL_AREA)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
unsigned short sid = 0xffff;
|
|
|
|
// -x
|
|
if (x > minx && isConnected(layer, idx, 0))
|
|
{
|
|
const int xidx = (x-1)+y*w;
|
|
if (layer.regs[xidx] != 0xffff && layer.areas[xidx] == layer.areas[idx])
|
|
sid = layer.regs[xidx];
|
|
}
|
|
|
|
if (sid == 0xffff)
|
|
{
|
|
sid = sweepId++;
|
|
sweeps[sid].nei = 0xffff;
|
|
sweeps[sid].ns = 0;
|
|
}
|
|
|
|
// -y
|
|
if (y > miny && isConnected(layer, idx, 3))
|
|
{
|
|
const int yidx = x+(y-1)*w;
|
|
const unsigned short nr = layer.regs[yidx];
|
|
if (nr != 0xffff && layer.areas[yidx] == layer.areas[idx])
|
|
{
|
|
// Set neighbour when first valid neighbour is encoutered.
|
|
if (sweeps[sid].ns == 0)
|
|
sweeps[sid].nei = nr;
|
|
|
|
if (sweeps[sid].nei == nr)
|
|
{
|
|
// Update existing neighbour
|
|
sweeps[sid].ns++;
|
|
prevCount[nr]++;
|
|
}
|
|
else
|
|
{
|
|
// This is hit if there is nore than one neighbour.
|
|
// Invalidate the neighbour.
|
|
sweeps[sid].nei = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
layer.regs[idx] = sid;
|
|
}
|
|
|
|
// Create unique ID.
|
|
for (int i = 0; i < sweepId; ++i)
|
|
{
|
|
// If the neighbour is set and there is only one continuous connection to it,
|
|
// the sweep will be merged with the previous one, else new region is created.
|
|
if (sweeps[i].nei != 0xffff && prevCount[sweeps[i].nei] == sweeps[i].ns)
|
|
{
|
|
sweeps[i].id = sweeps[i].nei;
|
|
}
|
|
else
|
|
{
|
|
sweeps[i].id = regId++;
|
|
}
|
|
}
|
|
|
|
// Remap local sweep ids to region ids.
|
|
for (int x = minx; x < maxx; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
if (layer.regs[idx] != 0xffff)
|
|
{
|
|
unsigned short id = sweeps[layer.regs[idx]].id;
|
|
|
|
layer.regs[idx] = id;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocate and init layer regions.
|
|
nregs = (int)regId;
|
|
|
|
// @UE BEGIN: special handling of "no regions"
|
|
if (nregs == 0)
|
|
{
|
|
regs = 0;
|
|
// treating this as success because we successfully generated 0 regions,
|
|
// no issues occurred, everything was good. Just no regions.
|
|
return DT_SUCCESS;
|
|
}
|
|
// @UE END
|
|
|
|
regs = (dtLayerMonotoneRegion*)alloc->alloc(sizeof(dtLayerMonotoneRegion) * nregs);
|
|
if (!regs)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset((void*)regs, 0, sizeof(dtLayerMonotoneRegion)*nregs);
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
regs[i].regId = 0xffff;
|
|
regs[i].neis.resize(16);
|
|
regs[i].neis.resize(0);
|
|
}
|
|
|
|
// Find region neighbours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
const int ciy = dtMin(y / chunkSize , numYChunks-1);
|
|
|
|
const bool borderY = (y == 0) || (y == (h - 1));
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned short ri = layer.regs[idx];
|
|
if (ri == 0xffff)
|
|
continue;
|
|
|
|
// Update area.
|
|
regs[ri].area++;
|
|
regs[ri].areaId = layer.areas[idx];
|
|
|
|
const int cix = dtMin(x / chunkSize , numXChunks-1);
|
|
regs[ri].chunkId = cix + (ciy * numXChunks);
|
|
regs[ri].border |= borderY || (x == 0) || (x == (w - 1));
|
|
|
|
// Update neighbours
|
|
if (y > 0 && isConnected(layer, idx, 3))
|
|
{
|
|
const int ymi = x+(y-1)*w;
|
|
const unsigned short rai = layer.regs[ymi];
|
|
if (rai != 0xffff && rai != ri)
|
|
{
|
|
addUniqueLast(regs[ri].neis, rai);
|
|
addUniqueLast(regs[rai].neis, ri);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
static void MergeAndCompressRegions(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, dtLayerMonotoneRegion* regs, int nregs, const int minRegionArea, const int mergeRegionArea)
|
|
{
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = (unsigned short)(i + 1);
|
|
|
|
// Remove too small regions.
|
|
if (minRegionArea > 0)
|
|
{
|
|
dtIntArray stack(32);
|
|
dtIntArray trace(32);
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
dtLayerMonotoneRegion& reg = regs[i];
|
|
if (reg.visited || reg.area == 0)
|
|
continue;
|
|
|
|
// Count the total size of all the connected regions.
|
|
// Also keep track of the regions connects to a tile border.
|
|
bool connectsToBorder = false;
|
|
int cellCount = 0;
|
|
stack.resize(0);
|
|
trace.resize(0);
|
|
|
|
reg.visited = true;
|
|
stack.push(i);
|
|
|
|
while (stack.size())
|
|
{
|
|
// Pop
|
|
int ri = stack.pop();
|
|
|
|
dtLayerMonotoneRegion& creg = regs[ri];
|
|
|
|
connectsToBorder |= creg.border;
|
|
cellCount += creg.area;
|
|
trace.push(ri);
|
|
|
|
for (int j = 0; j < creg.neis.size(); ++j)
|
|
{
|
|
dtLayerMonotoneRegion& neireg = regs[creg.neis[j]];
|
|
if (neireg.visited)
|
|
continue;
|
|
if (neireg.regId == 0)
|
|
continue;
|
|
// Visit
|
|
stack.push(neireg.regId - 1);
|
|
neireg.visited = true;
|
|
}
|
|
}
|
|
|
|
// If the accumulated regions size is too small, remove it.
|
|
// Do not remove areas which connect to tile borders
|
|
// as their size cannot be estimated correctly and removing them
|
|
// can potentially remove necessary areas.
|
|
if (cellCount < minRegionArea && !connectsToBorder)
|
|
{
|
|
// Kill all visited regions.
|
|
for (int j = 0; j < trace.size(); ++j)
|
|
{
|
|
regs[trace[j]].area = 0;
|
|
regs[trace[j]].regId = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
dtLayerMonotoneRegion& reg = regs[i];
|
|
if (reg.regId == 0)
|
|
continue;
|
|
// don't use mergeRegionArea, it doesn't work well with monotone partitioning
|
|
// (results in even more long thin polys)
|
|
|
|
int merge = -1;
|
|
int mergea = 0;
|
|
for (int j = 0; j < reg.neis.size(); ++j)
|
|
{
|
|
const unsigned short nei = (unsigned short)reg.neis[j];
|
|
dtLayerMonotoneRegion& regn = regs[nei];
|
|
if (reg.regId == regn.regId)
|
|
continue;
|
|
if (reg.areaId != regn.areaId || reg.chunkId != regn.chunkId)
|
|
continue;
|
|
if (regn.area > mergea)
|
|
{
|
|
if (canMerge(reg.regId, regn.regId, regs, nregs))
|
|
{
|
|
mergea = regn.area;
|
|
merge = (int)nei;
|
|
}
|
|
}
|
|
}
|
|
if (merge != -1)
|
|
{
|
|
const unsigned short oldId = reg.regId;
|
|
const unsigned short newId = regs[merge].regId;
|
|
for (int j = 0; j < nregs; ++j)
|
|
if (regs[j].regId == oldId)
|
|
regs[j].regId = newId;
|
|
}
|
|
}
|
|
|
|
unsigned short regId = 0;
|
|
if (nregs < 256)
|
|
{
|
|
// Compact ids.
|
|
unsigned short remap[256];
|
|
memset(remap, 0, sizeof(unsigned short)*256);
|
|
// Find number of unique regions.
|
|
for (int i = 0; i < nregs; ++i)
|
|
remap[regs[i].regId] = 1;
|
|
// skip region id 0, it's used for skipping minRegionArea
|
|
remap[0] = 0;
|
|
for (int i = 1; i < 256; ++i)
|
|
if (remap[i])
|
|
remap[i] = ++regId;
|
|
// Remap ids.
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = remap[regs[i].regId];
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].remap = true;
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
// skip region id 0, it's used for skipping minRegionArea
|
|
if (!regs[i].remap || regs[i].regId == 0)
|
|
continue;
|
|
unsigned short oldId = regs[i].regId;
|
|
unsigned short newId = ++regId;
|
|
for (int j = i; j < nregs; ++j)
|
|
{
|
|
if (regs[j].regId == oldId)
|
|
{
|
|
regs[j].regId = newId;
|
|
regs[j].remap = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
layer.regCount = regId;
|
|
|
|
const int maxi = (int)layer.header->width * (int)layer.header->height;
|
|
for (int i = 0; i < maxi; ++i)
|
|
{
|
|
if (layer.regs[i] != 0xffff)
|
|
layer.regs[i] = regs[layer.regs[i]].regId;
|
|
}
|
|
}
|
|
|
|
static void FreeRegions(dtTileCacheAlloc* alloc, dtLayerMonotoneRegion* regs, int nregs)
|
|
{
|
|
// destroy all elements to free internal rcIntArray allocations
|
|
for (int i = 0; i < nregs; i++)
|
|
{
|
|
regs[i].~dtLayerMonotoneRegion();
|
|
}
|
|
|
|
alloc->free(regs);
|
|
}
|
|
|
|
dtStatus dtBuildTileCacheRegionsMonotone(dtTileCacheAlloc* alloc, const int minRegionArea, const int mergeRegionArea, dtTileCacheLayer& layer)
|
|
{
|
|
dtLayerMonotoneRegion* regs = NULL;
|
|
int nregs = 0;
|
|
|
|
dtStatus status = CollectRegionsMonotone(alloc, layer, regs, nregs);
|
|
// having no regions and status being successful is a valid state
|
|
// we can avoid calling MergeAndCompressRegions if that happens
|
|
if (dtStatusSucceed(status) && nregs > 0)
|
|
{
|
|
MergeAndCompressRegions(alloc, layer, regs, nregs, minRegionArea, mergeRegionArea);
|
|
}
|
|
|
|
FreeRegions(alloc, regs, nregs);
|
|
return status;
|
|
}
|
|
|
|
dtStatus dtBuildTileCacheRegionsChunky(dtTileCacheAlloc* alloc, const int minRegionArea, const int mergeRegionArea, dtTileCacheLayer& layer, int regionChunkSize)
|
|
{
|
|
dtLayerMonotoneRegion* regs = NULL;
|
|
int nregs = 0;
|
|
|
|
dtStatus status = CollectRegionsChunky(alloc, layer, regionChunkSize, regs, nregs);
|
|
// having no regions and status being successful is a valid state
|
|
// we can avoid calling MergeAndCompressRegions if that happens
|
|
if (dtStatusSucceed(status) && nregs > 0)
|
|
{
|
|
MergeAndCompressRegions(alloc, layer, regs, nregs, minRegionArea, mergeRegionArea);
|
|
}
|
|
|
|
FreeRegions(alloc, regs, nregs);
|
|
return status;
|
|
}
|