3010 lines
79 KiB
C++
3010 lines
79 KiB
C++
// Copyright Epic Games, Inc. All Rights Reserved.
|
|
// Modified version of Recast/Detour's source file
|
|
|
|
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include "DetourTileCache/DetourTileCacheBuilder.h"
|
|
#include "Detour/DetourCommon.h"
|
|
#include "Detour/DetourAssert.h"
|
|
#include "DebugUtils/DetourDebugDraw.h"
|
|
#include "Stats/Stats.h"
|
|
#include <limits>
|
|
|
|
static const int MAX_VERTS_PER_POLY = 6; // TODO: use the DT_VERTS_PER_POLYGON
|
|
static const int MAX_REM_EDGES = 48; // TODO: make this an expression.
|
|
|
|
|
|
dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCacheContourSet* cset = (dtTileCacheContourSet*)alloc->alloc(sizeof(dtTileCacheContourSet));
|
|
memset(cset, 0, sizeof(dtTileCacheContourSet));
|
|
return cset;
|
|
}
|
|
|
|
void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCacheContourSet);
|
|
|
|
dtAssert(alloc);
|
|
|
|
if (!cset) return;
|
|
for (int i = 0; i < cset->nconts; ++i)
|
|
alloc->free(cset->conts[i].verts);
|
|
alloc->free(cset->conts);
|
|
alloc->free(cset);
|
|
}
|
|
|
|
//@UE BEGIN
|
|
#if WITH_NAVMESH_CLUSTER_LINKS
|
|
dtTileCacheClusterSet* dtAllocTileCacheClusterSet(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCacheClusterSet* clusters = (dtTileCacheClusterSet*)alloc->alloc(sizeof(dtTileCacheClusterSet));
|
|
memset(clusters, 0, sizeof(dtTileCacheClusterSet));
|
|
return clusters;
|
|
}
|
|
|
|
void dtFreeTileCacheClusterSet(dtTileCacheAlloc* alloc, dtTileCacheClusterSet* clusters)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCacheClusterSet);
|
|
|
|
dtAssert(alloc);
|
|
|
|
if (!clusters) return;
|
|
alloc->free(clusters->polyMap);
|
|
alloc->free(clusters->regMap);
|
|
alloc->free(clusters);
|
|
}
|
|
#endif // WITH_NAVMESH_CLUSTER_LINKS
|
|
//@UE END
|
|
|
|
dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCachePolyMesh* lmesh = (dtTileCachePolyMesh*)alloc->alloc(sizeof(dtTileCachePolyMesh));
|
|
memset(lmesh, 0, sizeof(dtTileCachePolyMesh));
|
|
return lmesh;
|
|
}
|
|
|
|
void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCachePolyMesh);
|
|
|
|
dtAssert(alloc);
|
|
|
|
if (!lmesh) return;
|
|
alloc->free(lmesh->verts);
|
|
alloc->free(lmesh->polys);
|
|
alloc->free(lmesh->flags);
|
|
alloc->free(lmesh->areas);
|
|
alloc->free(lmesh->regs);
|
|
alloc->free(lmesh);
|
|
}
|
|
|
|
dtTileCachePolyMeshDetail* dtAllocTileCachePolyMeshDetail(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCachePolyMeshDetail* dmesh = (dtTileCachePolyMeshDetail*)alloc->alloc(sizeof(dtTileCachePolyMeshDetail));
|
|
memset(dmesh, 0, sizeof(dtTileCachePolyMeshDetail));
|
|
return dmesh;
|
|
}
|
|
|
|
void dtFreeTileCachePolyMeshDetail(dtTileCacheAlloc* alloc, dtTileCachePolyMeshDetail* dmesh)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCachePolyMeshDetail);
|
|
|
|
dtAssert(alloc);
|
|
|
|
if (!dmesh) return;
|
|
alloc->free(dmesh->meshes);
|
|
alloc->free(dmesh->verts);
|
|
alloc->free(dmesh->tris);
|
|
alloc->free(dmesh);
|
|
}
|
|
|
|
dtTileCacheDistanceField* dtAllocTileCacheDistanceField(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCacheDistanceField* dfield = (dtTileCacheDistanceField*)alloc->alloc(sizeof(dtTileCacheDistanceField));
|
|
memset(dfield, 0, sizeof(dtTileCacheDistanceField));
|
|
return dfield;
|
|
}
|
|
|
|
void dtFreeTileCacheDistanceField(dtTileCacheAlloc* alloc, dtTileCacheDistanceField* dfield)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCacheDistanceField);
|
|
|
|
dtAssert(alloc);
|
|
|
|
if (!dfield) return;
|
|
alloc->free(dfield->data);
|
|
alloc->free(dfield);
|
|
}
|
|
|
|
|
|
struct dtTempContour
|
|
{
|
|
inline dtTempContour(unsigned short* vbuf, const int nvbuf,
|
|
unsigned short* pbuf, const int npbuf) :
|
|
verts(vbuf), nverts(0), cverts(nvbuf),
|
|
poly(pbuf), npoly(0), cpoly(npbuf)
|
|
{
|
|
}
|
|
unsigned short* verts; // v[0], v[1], v[2] coordinates, v[3] region, v[4] area (high bit indicates vertex pinning, removed in countour simplification).
|
|
int nverts;
|
|
int cverts;
|
|
unsigned short* poly; // index in verts for the contour of the poly
|
|
int npoly;
|
|
int cpoly;
|
|
};
|
|
|
|
|
|
|
|
|
|
inline bool overlapRangeExl(const unsigned short amin, const unsigned short amax,
|
|
const unsigned short bmin, const unsigned short bmax,
|
|
const unsigned short ya, const unsigned short eya,
|
|
const unsigned short yb, const unsigned short eyb,
|
|
const int walkableClimb)
|
|
{
|
|
const bool longitudinalOverlapExl = !(amin >= bmax || amax <= bmin);
|
|
const bool elevationOverlap = (dtAbs(ya-eya) <= walkableClimb) || (dtAbs(yb-eyb) <= walkableClimb);
|
|
return longitudinalOverlapExl && elevationOverlap;
|
|
}
|
|
|
|
// Returns true on success, false if there was an error adding a vertex.
|
|
static bool appendVertex(dtTempContour& cont, const int x, const int y, const int z, const int neiReg, const unsigned char areaId, const bool allowMerging) // UE
|
|
{
|
|
// Try to merge with existing segments.
|
|
if (cont.nverts > 1)
|
|
{
|
|
// pa---------pb---------new(x,y,z)
|
|
const unsigned short* pa = &cont.verts[(cont.nverts-2)*5];
|
|
unsigned short* pb = &cont.verts[(cont.nverts-1)*5];
|
|
const unsigned short pr = pb[3];
|
|
if (allowMerging && pr == neiReg) // UE
|
|
{
|
|
if (pa[0] == pb[0] && (int)pb[0] == x)
|
|
{
|
|
// The verts are aligned aling x-axis, update z.
|
|
pb[1] = (unsigned short)y;
|
|
pb[2] = (unsigned short)z;
|
|
return true;
|
|
}
|
|
else if (pa[2] == pb[2] && (int)pb[2] == z)
|
|
{
|
|
// The verts are aligned aling z-axis, update x.
|
|
pb[0] = (unsigned short)x;
|
|
pb[1] = (unsigned short)y;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add new point.
|
|
if (cont.nverts+1 > cont.cverts)
|
|
return false;
|
|
|
|
unsigned short* v = &cont.verts[cont.nverts*5];
|
|
v[0] = (unsigned short)x;
|
|
v[1] = (unsigned short)y;
|
|
v[2] = (unsigned short)z;
|
|
v[3] = (unsigned short)neiReg;
|
|
v[4] = areaId;
|
|
cont.nverts++;
|
|
|
|
return true;
|
|
}
|
|
|
|
//@UE BEGIN
|
|
static void getNeighbourRegAndAreaAndVertexHeight(dtTileCacheLayer& layer,
|
|
const int ax, const int ay, const int abDir,
|
|
unsigned short& neiReg, unsigned char& neiArea, unsigned char& cornerNeiArea, unsigned short& vertexHeight)
|
|
{
|
|
// [a] is the current cell, [b] is the direct neighbour in the direction 'dir'.
|
|
// ^
|
|
// [b][c]
|
|
// [a][d]
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int ia = ax + ay*w;
|
|
const unsigned char acon = layer.cons[ia] & 0xf;
|
|
const unsigned char portal = layer.cons[ia] >> 4;
|
|
const unsigned char abDirMask = (unsigned char)(1 << abDir);
|
|
|
|
const int bcDir = (abDir + 1) & 0x3;
|
|
const unsigned char bcDirMask = (unsigned char)(1 << bcDir);
|
|
|
|
cornerNeiArea = 0;
|
|
|
|
if ((acon & abDirMask) == 0)
|
|
{
|
|
// No connection, return portal or hard edge.
|
|
if (portal & abDirMask)
|
|
{
|
|
neiReg = 0xf800 + (unsigned char)abDir;
|
|
neiArea = 0;
|
|
}
|
|
else
|
|
{
|
|
neiReg = 0xffff;
|
|
neiArea = 0;
|
|
}
|
|
|
|
// Find the vertex height. Try going A-D-C, get height of d and c.
|
|
vertexHeight = layer.heights[ia];
|
|
if ((acon & bcDirMask) != 0)
|
|
{
|
|
// a is connected to d
|
|
const int dx = ax + getDirOffsetX(bcDir);
|
|
const int dy = ay + getDirOffsetY(bcDir);
|
|
const int id = dx + dy * w;
|
|
vertexHeight = dtMax(vertexHeight, layer.heights[id]);
|
|
|
|
const unsigned char dcon = layer.cons[id] & 0xf;
|
|
if ((dcon & abDirMask) != 0)
|
|
{
|
|
// d is connected to c
|
|
const int cx = dx + getDirOffsetX(abDir);
|
|
const int cy = dy + getDirOffsetY(abDir);
|
|
const int ic = cx + cy * w;
|
|
vertexHeight = dtMax(vertexHeight, layer.heights[ic]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// a is connected to b
|
|
const int bx = ax + getDirOffsetX(abDir);
|
|
const int by = ay + getDirOffsetY(abDir);
|
|
const int ib = bx + by*w;
|
|
|
|
neiReg = layer.regs[ib];
|
|
neiArea = layer.areas[ib];
|
|
vertexHeight = dtMax(layer.heights[ia], layer.heights[ib]);
|
|
|
|
// Get area type of the cell diagonal [c] to current cell [a]. Where [b] is direct neighbour in the direction of 'dir'.
|
|
// ^
|
|
// [b][c]
|
|
// [a][d]
|
|
const unsigned char bcon = layer.cons[ib] & 0xf;
|
|
if ((bcon & bcDirMask) == 0)
|
|
{
|
|
cornerNeiArea = 0;
|
|
}
|
|
else
|
|
{
|
|
// b is connected to c
|
|
const int cx = bx + getDirOffsetX(bcDir);
|
|
const int cy = by + getDirOffsetY(bcDir);
|
|
const int ic = cx + cy * w;
|
|
cornerNeiArea = layer.areas[ic];
|
|
vertexHeight = dtMax(vertexHeight, layer.heights[ic]);
|
|
}
|
|
|
|
// If connected, check the height of d to get the maximum for the vertexHeight.
|
|
if ((acon & bcDirMask) != 0)
|
|
{
|
|
// a is connected to d
|
|
const int dx = ax + getDirOffsetX(bcDir);
|
|
const int dy = ay + getDirOffsetY(bcDir);
|
|
const int id = dx + dy * w;
|
|
vertexHeight = dtMax(vertexHeight, layer.heights[id]);
|
|
}
|
|
}
|
|
}
|
|
//@UE END
|
|
|
|
static bool walkContour(dtTileCacheLayer& layer, int x, int y, int idx, const bool allowMerging, unsigned char* flags, dtTempContour& cont, int& contourIndex) // UE
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
unsigned char dir = 0;
|
|
while ((flags[idx] & (1 << dir)) == 0)
|
|
dir++;
|
|
|
|
int startDir = dir;
|
|
int startIdx = idx;
|
|
cont.nverts = 0;
|
|
|
|
unsigned short neiReg = 0xffff;
|
|
unsigned char neiArea = 0;
|
|
unsigned char cornerNeiArea = 0;
|
|
unsigned short vertexHeight = 0; // UE
|
|
unsigned short prevNeiArea = 0;
|
|
unsigned short prevCornerNeiArea = 0;
|
|
bool checkForPinning = false;
|
|
|
|
const int maxIter = w * h * 2;
|
|
int iter = 0;
|
|
while (iter < maxIter)
|
|
{
|
|
int nx = x;
|
|
int ny = y;
|
|
unsigned char ndir = dir;
|
|
|
|
getNeighbourRegAndAreaAndVertexHeight(layer, x, y, dir, neiReg, neiArea, cornerNeiArea, vertexHeight); // UE
|
|
|
|
// Check if the region in the provided direction is different than the region at x,y.
|
|
if (neiReg != layer.regs[x+y*w])
|
|
{
|
|
// Solid edge.
|
|
if (checkForPinning)
|
|
{
|
|
// Detect if there was 8-connected area type change during the turn.
|
|
// If it did, we need to make sure the vertex added during turn does not get simplified.
|
|
// AB
|
|
// xC
|
|
// x = current location, A = prevNeiArea, B = prevCornerNeiArea, C = neiArea.
|
|
const bool shouldPinVertex = prevNeiArea == neiArea && prevCornerNeiArea != neiArea;
|
|
if (shouldPinVertex && cont.nverts > 0)
|
|
{
|
|
unsigned short* v = &cont.verts[(cont.nverts - 1) * 5];
|
|
v[4] |= 0x8000; // Use high bits in the area type to flag pinning of the vertex, will be removed in the contour simplification.
|
|
}
|
|
}
|
|
|
|
// Get corner vertex
|
|
int px = x;
|
|
int pz = y;
|
|
switch(dir)
|
|
{
|
|
case 0: pz++; break;
|
|
case 1: px++; pz++; break;
|
|
case 2: px++; break;
|
|
}
|
|
|
|
// Try to merge with previous vertex.
|
|
if (!appendVertex(cont, px, vertexHeight, pz, neiReg, neiArea, allowMerging)) // UE
|
|
return false;
|
|
|
|
flags[idx] &= ~(1 << dir); // Remove visited edges
|
|
ndir = (dir+1) & 0x3; // Rotate CW
|
|
checkForPinning = true;
|
|
}
|
|
else
|
|
{
|
|
// Move to next.
|
|
nx = x + getDirOffsetX(dir);
|
|
ny = y + getDirOffsetY(dir);
|
|
ndir = (dir+3) & 0x3; // Rotate CCW
|
|
checkForPinning = false;
|
|
}
|
|
|
|
if (iter > 0 && idx == startIdx && dir == startDir)
|
|
break;
|
|
|
|
prevNeiArea = neiArea;
|
|
prevCornerNeiArea = cornerNeiArea;
|
|
|
|
x = nx;
|
|
y = ny;
|
|
dir = ndir;
|
|
idx = x+y*w;
|
|
|
|
iter++;
|
|
}
|
|
|
|
// Remove last vertex if it is duplicate of the first one.
|
|
unsigned short* pa = &cont.verts[(cont.nverts-1)*5];
|
|
unsigned short* pb = &cont.verts[0];
|
|
if (pa[0] == pb[0] && pa[2] == pb[2])
|
|
cont.nverts--;
|
|
|
|
//@UE BEGIN
|
|
// Check if first vertex should be merged.
|
|
if (cont.nverts > 1)
|
|
{
|
|
unsigned short* last = &cont.verts[(cont.nverts-1)*5];
|
|
unsigned short* first = &cont.verts[0*5];
|
|
unsigned short* next = &cont.verts[1*5];
|
|
|
|
// Check if we can remove first vertex. First vertex will become last vertex.
|
|
if (allowMerging && first[3] == next[3])
|
|
{
|
|
if (last[0] == first[0] && first[0] == next[0])
|
|
{
|
|
// The verts are aligned aling x-axis, update z.
|
|
first[1] = last[1];
|
|
first[2] = last[2];
|
|
first[3] = last[3];
|
|
first[4] = last[4];
|
|
cont.nverts--; // remove last
|
|
}
|
|
else if (last[2] == first[2] && first[2] == next[2])
|
|
{
|
|
// The verts are aligned aling z-axis, update x.
|
|
first[0] = last[0];
|
|
first[1] = last[1];
|
|
first[3] = last[3];
|
|
first[4] = last[4];
|
|
cont.nverts--; // remove last
|
|
}
|
|
}
|
|
}
|
|
//@UE END
|
|
|
|
contourIndex++;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace TileCacheFunc
|
|
{
|
|
static dtReal distancePtSegSqr2D(const int x, const int z, const int px, const int pz, const int qx, const int qz) // UE
|
|
{
|
|
dtReal pqx = (dtReal)(qx - px);
|
|
dtReal pqz = (dtReal)(qz - pz);
|
|
dtReal dx = (dtReal)(x - px);
|
|
dtReal dz = (dtReal)(z - pz);
|
|
dtReal d = pqx*pqx + pqz*pqz;
|
|
dtReal t = pqx*dx + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = px + t*pqx - x;
|
|
dz = pz + t*pqz - z;
|
|
|
|
return dx*dx + dz*dz;
|
|
}
|
|
}
|
|
|
|
static void simplifyContour(unsigned char area, unsigned short region, dtTempContour& cont, const dtReal maxError, const dtReal elevationRatio, const dtReal cs, const dtReal ch) // UE
|
|
{
|
|
cont.npoly = 0;
|
|
|
|
if (cont.nverts < 2)
|
|
{
|
|
// corrupted, remove it
|
|
cont.nverts = 0;
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < cont.nverts; ++i)
|
|
{
|
|
int j = (i+1) % cont.nverts;
|
|
// Check for start of a wall segment or pinned vertices.
|
|
const unsigned short ra = cont.verts[j*5+3];
|
|
const unsigned short rb = cont.verts[i*5+3];
|
|
const bool pinnedVertex = (cont.verts[i*5+4] & 0x8000) != 0;
|
|
if (ra != rb || pinnedVertex)
|
|
cont.poly[cont.npoly++] = (unsigned short)i;
|
|
}
|
|
|
|
if (cont.npoly < 2)
|
|
{
|
|
// If there is no transitions at all,
|
|
// create some initial points for the simplification process.
|
|
// Find lower-left and upper-right vertices of the contour.
|
|
int llx = cont.verts[0];
|
|
int llz = cont.verts[2];
|
|
int lli = 0;
|
|
int urx = cont.verts[0];
|
|
int urz = cont.verts[2];
|
|
int uri = 0;
|
|
for (int i = 1; i < cont.nverts; ++i)
|
|
{
|
|
int x = cont.verts[i*5+0];
|
|
int z = cont.verts[i*5+2];
|
|
if (x < llx || (x == llx && z < llz))
|
|
{
|
|
llx = x;
|
|
llz = z;
|
|
lli = i;
|
|
}
|
|
if (x > urx || (x == urx && z > urz))
|
|
{
|
|
urx = x;
|
|
urz = z;
|
|
uri = i;
|
|
}
|
|
}
|
|
cont.npoly = 0;
|
|
cont.poly[cont.npoly++] = (unsigned short)lli;
|
|
cont.poly[cont.npoly++] = (unsigned short)uri;
|
|
}
|
|
|
|
const dtReal heightRatio = elevationRatio * ch / cs; // UE
|
|
const bool checkElevation = elevationRatio > 0; // UE
|
|
|
|
// Add points until all raw points are within
|
|
// error tolerance to the simplified shape.
|
|
for (int i = 0; i < cont.npoly; )
|
|
{
|
|
int ii = (i+1) % cont.npoly;
|
|
|
|
const int ai = (int)cont.poly[i];
|
|
int ax = (int)cont.verts[ai*5+0];
|
|
int ay = (int)cont.verts[ai*5+1]; // UE
|
|
int az = (int)cont.verts[ai*5+2];
|
|
|
|
const int bi = (int)cont.poly[ii];
|
|
int bx = (int)cont.verts[bi*5+0];
|
|
int by = (int)cont.verts[bi*5+1]; // UE
|
|
int bz = (int)cont.verts[bi*5+2];
|
|
|
|
// Find maximum deviation from the segment.
|
|
dtReal maxd = 0;
|
|
int maxi = -1;
|
|
int ci, cinc, endi;
|
|
|
|
//@UE BEGIN
|
|
dtReal a[3];
|
|
dtReal b[3];
|
|
if (checkElevation)
|
|
{
|
|
a[0] = (dtReal)ax;
|
|
a[1] = heightRatio * ay;
|
|
a[2] = (dtReal)az;
|
|
b[0] = (dtReal)bx;
|
|
b[1] = heightRatio * by;
|
|
b[2] = (dtReal)bz;
|
|
}
|
|
//@UE END
|
|
|
|
// Traverse the segment in lexilogical order so that the
|
|
// max deviation is calculated similarly when traversing
|
|
// opposite segments.
|
|
if (bx > ax || (bx == ax && bz > az))
|
|
{
|
|
cinc = 1;
|
|
ci = (ai+cinc) % cont.nverts;
|
|
endi = bi;
|
|
}
|
|
else
|
|
{
|
|
cinc = cont.nverts-1;
|
|
ci = (bi+cinc) % cont.nverts;
|
|
endi = ai;
|
|
|
|
//@UE BEGIN
|
|
// Because of floating point imprecision, dtDistancePtSegSqr to a-b might be slightly differ from dtDistancePtSegSqr to b-a.
|
|
// Swap points because we need the maximum deviation to be computed the same way for opposite segments to match.
|
|
if (checkElevation)
|
|
{
|
|
dtSwap(a[0], b[0]);
|
|
dtSwap(a[1], b[1]);
|
|
dtSwap(a[2], b[2]);
|
|
}
|
|
else
|
|
{
|
|
dtSwap(ax, bx);
|
|
dtSwap(az, bz);
|
|
}
|
|
//@UE END
|
|
}
|
|
|
|
// Tessellate only between regions and areas.
|
|
const unsigned short* ciSrc = &cont.verts[ci*5];
|
|
const int ciReg = ciSrc[3];
|
|
const unsigned char ciArea = (unsigned char)ciSrc[4];
|
|
if (area != ciArea || ciReg == 0xffff || (checkElevation && region != ciReg)) // UE
|
|
{
|
|
while (ci != endi)
|
|
{
|
|
//@UE BEGIN
|
|
dtReal d;
|
|
if (checkElevation)
|
|
{
|
|
// Instead of multiplying all components by ch or cs to go from voxels to world units,
|
|
// we just use the heightRatio (avoiding extra cs multiplication on x and z).
|
|
const dtReal pt[3] = { (dtReal)cont.verts[ci*5+0], heightRatio*cont.verts[ci*5+1], (dtReal)cont.verts[ci*5+2] };
|
|
d = dtDistancePtSegSqr(pt, a, b);
|
|
}
|
|
else
|
|
{
|
|
d = TileCacheFunc::distancePtSegSqr2D(cont.verts[ci*5+0], cont.verts[ci*5+2], ax, az, bx, bz);
|
|
}
|
|
//@UE END
|
|
if (d > maxd)
|
|
{
|
|
maxd = d;
|
|
maxi = ci;
|
|
}
|
|
ci = (ci+cinc) % cont.nverts;
|
|
}
|
|
}
|
|
|
|
// If the max deviation is larger than accepted error,
|
|
// add new point, else continue to next segment.
|
|
if (maxi != -1 && maxd > (maxError*maxError))
|
|
{
|
|
cont.npoly++;
|
|
for (int j = cont.npoly-1; j > i; --j)
|
|
cont.poly[j] = cont.poly[j-1];
|
|
cont.poly[i+1] = (unsigned short)maxi;
|
|
}
|
|
else
|
|
{
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// Remap vertices
|
|
int start = 0;
|
|
for (int i = 1; i < cont.npoly; ++i)
|
|
if (cont.poly[i] < cont.poly[start])
|
|
start = i;
|
|
|
|
cont.nverts = 0;
|
|
for (int i = 0; i < cont.npoly; ++i)
|
|
{
|
|
const int j = (start+i) % cont.npoly;
|
|
unsigned short* src = &cont.verts[cont.poly[j]*5];
|
|
unsigned short* dst = &cont.verts[cont.nverts*5];
|
|
|
|
// check for degenerated segments (RecastContour.cpp : removeDegenerateSegments)
|
|
const int nj = (start+i+1) % cont.npoly;
|
|
unsigned short* nextSeg = &cont.verts[cont.poly[nj]*5];
|
|
if (src[0] == nextSeg[0] && src[2] == nextSeg[2])
|
|
{
|
|
// skip degenerated ones
|
|
continue;
|
|
}
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4] & 0xff; // Mask out pinned vertex flag.
|
|
cont.nverts++;
|
|
}
|
|
}
|
|
|
|
static unsigned short getCornerHeight(dtTileCacheLayer& layer, const int x, const int y, const int z, const int walkableClimb, bool& shouldRemove)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
int n = 0;
|
|
|
|
unsigned char portal = 0xf;
|
|
unsigned short height = 0;
|
|
unsigned short preg = 0xffff; // portal region
|
|
bool allSameReg = true;
|
|
|
|
for (int dz = -1; dz <= 0; ++dz)
|
|
{
|
|
for (int dx = -1; dx <= 0; ++dx)
|
|
{
|
|
const int px = x+dx;
|
|
const int pz = z+dz;
|
|
if (px >= 0 && pz >= 0 && px < w && pz < h)
|
|
{
|
|
const int idx = px + pz*w;
|
|
const int lh = (int)layer.heights[idx];
|
|
if (dtAbs(lh-y) <= walkableClimb && layer.areas[idx] != DT_TILECACHE_NULL_AREA)
|
|
{
|
|
height = dtMax(height, (unsigned short)lh);
|
|
portal &= (layer.cons[idx] >> 4);
|
|
if (preg != 0xffff && preg != layer.regs[idx])
|
|
allSameReg = false;
|
|
preg = layer.regs[idx];
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int portalCount = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (portal & (1<<dir))
|
|
portalCount++;
|
|
}
|
|
|
|
shouldRemove = false;
|
|
if (n > 1 && portalCount == 1 && allSameReg)
|
|
{
|
|
shouldRemove = true;
|
|
}
|
|
|
|
return height;
|
|
}
|
|
|
|
static int calcAreaOfPolygon2D(const unsigned short* verts, const int nverts)
|
|
{
|
|
int area = 0;
|
|
for (int i = 0, j = nverts-1; i < nverts; j=i++)
|
|
{
|
|
const unsigned short* vi = &verts[i*4];
|
|
const unsigned short* vj = &verts[j*4];
|
|
area += vi[0] * vj[2] - vj[0] * vi[2];
|
|
}
|
|
return (area+1) / 2;
|
|
}
|
|
|
|
inline bool ileft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
|
|
}
|
|
|
|
static void getClosestIndices(const unsigned short* vertsa, const int nvertsa,
|
|
const unsigned short* vertsb, const int nvertsb,
|
|
int& ia, int& ib, int& closestDist)
|
|
{
|
|
closestDist = 0xfffffff;
|
|
ia = -1, ib = -1;
|
|
for (int i = 0; i < nvertsa; ++i)
|
|
{
|
|
const int in = (i+1) % nvertsa;
|
|
const int ip = (i+nvertsa-1) % nvertsa;
|
|
const unsigned short* va = &vertsa[i*4];
|
|
const unsigned short* van = &vertsa[in*4];
|
|
const unsigned short* vap = &vertsa[ip*4];
|
|
|
|
for (int j = 0; j < nvertsb; ++j)
|
|
{
|
|
const unsigned short* vb = &vertsb[j*4];
|
|
// vb must be "infront" of va.
|
|
if (ileft(vap,va,vb) && ileft(va,van,vb))
|
|
{
|
|
const int dx = vb[0] - va[0];
|
|
const int dz = vb[2] - va[2];
|
|
const int d = dx*dx + dz*dz;
|
|
if (d < closestDist)
|
|
{
|
|
ia = i;
|
|
ib = j;
|
|
closestDist = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool mergeContours(dtTileCacheAlloc* alloc, dtTileCacheContour& ca, dtTileCacheContour& cb, int ia, int ib)
|
|
{
|
|
const int maxVerts = ca.nverts + cb.nverts + 2;
|
|
unsigned short* verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVerts*4);
|
|
if (!verts)
|
|
return false;
|
|
|
|
int nv = 0;
|
|
|
|
// Copy contour A.
|
|
for (int i = 0; i <= ca.nverts; ++i)
|
|
{
|
|
unsigned short* dst = &verts[nv*4];
|
|
const unsigned short* src = &ca.verts[((ia+i)%ca.nverts)*4];
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
nv++;
|
|
}
|
|
|
|
// Copy contour B
|
|
for (int i = 0; i <= cb.nverts; ++i)
|
|
{
|
|
unsigned short* dst = &verts[nv*4];
|
|
const unsigned short* src = &cb.verts[((ib+i)%cb.nverts)*4];
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
nv++;
|
|
}
|
|
|
|
alloc->free(ca.verts);
|
|
ca.verts = verts;
|
|
ca.nverts = nv;
|
|
|
|
alloc->free(cb.verts);
|
|
cb.verts = 0;
|
|
cb.nverts = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void getContourCenter(const dtTileCacheContour* cont, const dtReal* orig, dtReal cs, dtReal ch, dtReal* center)
|
|
{
|
|
center[0] = 0;
|
|
center[1] = 0;
|
|
center[2] = 0;
|
|
if (!cont->nverts)
|
|
return;
|
|
for (int i = 0; i < cont->nverts; ++i)
|
|
{
|
|
const unsigned short* v = &cont->verts[i*4];
|
|
center[0] += (dtReal)v[0];
|
|
center[1] += (dtReal)v[1];
|
|
center[2] += (dtReal)v[2];
|
|
}
|
|
const dtReal s = dtReal(1.) / cont->nverts;
|
|
center[0] *= s * cs;
|
|
center[1] *= s * ch;
|
|
center[2] *= s * cs;
|
|
center[0] += orig[0];
|
|
center[1] += orig[1] + 4 * ch;
|
|
center[2] += orig[2];
|
|
}
|
|
|
|
static void addUniqueRegion(unsigned short* arr, unsigned short v, int& n)
|
|
{
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
if (arr[i] == v)
|
|
return;
|
|
}
|
|
|
|
arr[n] = v;
|
|
n++;
|
|
}
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer,
|
|
const int walkableClimb, const dtReal maxError, const dtReal simplificationElevationRatio, // UE
|
|
const dtReal cs, const dtReal ch,
|
|
dtTileCacheContourSet& lcset
|
|
//@UE BEGIN
|
|
#if WITH_NAVMESH_CLUSTER_LINKS
|
|
, dtTileCacheClusterSet& clusters
|
|
#endif //WITH_NAVMESH_CLUSTER_LINKS
|
|
, const bool skipContourSimplification /*=false*/
|
|
//@UE END
|
|
)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
int maxConts = layer.regCount;
|
|
lcset.nconts = 0;
|
|
lcset.conts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*maxConts);
|
|
if (!lcset.conts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(lcset.conts, 0, sizeof(dtTileCacheContour)*maxConts);
|
|
|
|
// Allocate temp buffer for contour tracing.
|
|
const int maxTempVerts = w*h;
|
|
|
|
dtFixedArray<unsigned short> tempVerts(alloc, maxTempVerts*6);
|
|
if (!tempVerts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> tempPoly(alloc, maxTempVerts);
|
|
if (!tempPoly)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned char> flags(alloc, w*h);
|
|
if (!flags)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
// Mark area boundaries
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned short ri = layer.regs[idx];
|
|
if (ri == 0xffff)
|
|
{
|
|
flags[idx] = 0;
|
|
continue;
|
|
}
|
|
|
|
unsigned char res = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
const unsigned char con = layer.cons[idx] & 0xf;
|
|
const unsigned char mask = (unsigned char)(1<<dir);
|
|
unsigned short r = 0xffff;
|
|
|
|
if (con & mask)
|
|
{
|
|
const int ax = x + getDirOffsetX(dir);
|
|
const int ay = y + getDirOffsetY(dir);
|
|
if (ax >= 0 && ay >= 0 && ax < w && ay < h)
|
|
{
|
|
const int aidx = ax + ay*w;
|
|
r = layer.regs[aidx];
|
|
}
|
|
}
|
|
|
|
if (r == ri)
|
|
res |= (1 << dir);
|
|
}
|
|
|
|
flags[idx] = res ^ 0xf; // Inverse, mark non connected edges.
|
|
}
|
|
}
|
|
|
|
dtTempContour temp(tempVerts, maxTempVerts, tempPoly, maxTempVerts);
|
|
dtIntArray links;
|
|
dtIntArray nlinks(maxConts);
|
|
dtIntArray linksBase(maxConts);
|
|
|
|
// Only allow merging when not using height in the contour simplification process.
|
|
const bool allowMerging = (simplificationElevationRatio == 0);
|
|
|
|
// Find contours.
|
|
int contourIndex = 0; // UE
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
if (flags[idx] == 0)
|
|
{
|
|
// All cell edges are connected, ignore it.
|
|
continue;
|
|
}
|
|
|
|
const unsigned short ri = layer.regs[idx];
|
|
if (ri == 0xffff || ri == 0)
|
|
continue;
|
|
|
|
if (!walkContour(layer, x, y, idx, allowMerging, flags, temp, contourIndex)) // UE
|
|
{
|
|
// Too complex contour.
|
|
// Note: If you hit here often, try increasing 'maxTempVerts'.
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
if (!skipContourSimplification)
|
|
{
|
|
simplifyContour(layer.areas[idx], ri, temp, maxError, simplificationElevationRatio, cs, ch); // UE
|
|
}
|
|
|
|
// Store contour.
|
|
if (lcset.nconts >= maxConts)
|
|
{
|
|
// Allocate more contours.
|
|
maxConts *= 2;
|
|
|
|
dtTileCacheContour* newConts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*maxConts);
|
|
if (!newConts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset(newConts, 0, sizeof(dtTileCacheContour)*maxConts);
|
|
for (int j = 0; j < lcset.nconts; ++j)
|
|
{
|
|
newConts[j] = lcset.conts[j];
|
|
// Reset source pointers to prevent data deletion.
|
|
lcset.conts[j].verts = 0;
|
|
}
|
|
alloc->free(lcset.conts);
|
|
lcset.conts = newConts;
|
|
|
|
linksBase.resize(maxConts);
|
|
nlinks.resize(maxConts);
|
|
}
|
|
|
|
const int contIdx = lcset.nconts;
|
|
lcset.nconts++;
|
|
|
|
dtTileCacheContour& cont = lcset.conts[contIdx];
|
|
cont.reg = ri;
|
|
cont.area = layer.areas[idx];
|
|
linksBase[contIdx] = links.size();
|
|
|
|
int nnei = 0;
|
|
cont.nverts = temp.nverts;
|
|
if (cont.nverts > 0)
|
|
{
|
|
cont.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*4*temp.nverts);
|
|
if (!cont.verts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
for (int i = 0, j = temp.nverts-1; i < temp.nverts; j=i++)
|
|
{
|
|
unsigned short* dst = &cont.verts[j*4];
|
|
unsigned short* v = &temp.verts[j*5];
|
|
unsigned short* vn = &temp.verts[i*5];
|
|
unsigned short nei = vn[3]; // The neighbour reg is stored at segment vertex of a segment.
|
|
bool shouldRemove = false;
|
|
unsigned short lh = getCornerHeight(layer, (int)v[0], (int)v[1], (int)v[2],
|
|
walkableClimb, shouldRemove);
|
|
|
|
if ((nei != 0xffff) && ((nei & 0xf800) == 0))
|
|
{
|
|
links.push(nei);
|
|
nnei++;
|
|
}
|
|
|
|
dst[0] = v[0];
|
|
dst[1] = lh;
|
|
dst[2] = v[2];
|
|
|
|
// Store portal direction and store remove status to the fourth component.
|
|
dst[3] = 0x0f; // Set direction to 0xf
|
|
if (nei != 0xffff && nei >= 0xf800)
|
|
dst[3] = (unsigned char)(nei - 0xf800);
|
|
if (shouldRemove)
|
|
dst[3] |= 0x80;
|
|
}
|
|
}
|
|
|
|
nlinks[contIdx] = nnei;
|
|
}
|
|
}
|
|
|
|
// Check and merge droppings.
|
|
// Sometimes the previous algorithms can fail and create several contours
|
|
// per area. This pass will try to merge the holes into the main region.
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
dtTileCacheContour& cont = lcset.conts[i];
|
|
// Check if the contour is would backwards.
|
|
if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
|
|
{
|
|
// Find another contour which has the same region ID.
|
|
int mergeIdx = -1;
|
|
int mergePA = 0, mergePB = 0;
|
|
int bestDist = 0xfffffff;
|
|
|
|
for (int j = 0; j < lcset.nconts; ++j)
|
|
{
|
|
dtTileCacheContour& mcont = lcset.conts[j];
|
|
if (i == j) continue;
|
|
|
|
if (mcont.nverts && mcont.reg == cont.reg)
|
|
{
|
|
int ia = 0, ib = 0;
|
|
int testDist = 0xfffffff;
|
|
getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib, testDist);
|
|
|
|
// there could be more than one (isolated islands), merge with closest contour
|
|
if (ia != -1 && ib != -1)
|
|
{
|
|
if (mergeIdx < 0 || testDist < bestDist)
|
|
{
|
|
mergeIdx = j;
|
|
mergePA = ia;
|
|
mergePB = ib;
|
|
bestDist = testDist;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mergeIdx != -1)
|
|
{
|
|
dtTileCacheContour& mcont = lcset.conts[mergeIdx];
|
|
mergeContours(alloc, mcont, cont, mergePA, mergePB);
|
|
}
|
|
}
|
|
}
|
|
|
|
//@UE BEGIN
|
|
#if WITH_NAVMESH_CLUSTER_LINKS
|
|
// Build clusters
|
|
clusters.nregs = layer.regCount ? (layer.regCount + 1) : 0;
|
|
clusters.npolys = 0;
|
|
clusters.nclusters = 0;
|
|
clusters.regMap = (unsigned short*)alloc->alloc(sizeof(unsigned short)*clusters.nregs);
|
|
if (!clusters.regMap)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset(clusters.regMap, 0xff, sizeof(unsigned short)*clusters.nregs);
|
|
if (clusters.nregs <= 0)
|
|
{
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
// outer loop: find first unassigned region
|
|
// loop: find all contours matching this region
|
|
// - create new cluster (once)
|
|
// - gather all neighbor regions
|
|
// - repeat inner loop for every region from list
|
|
|
|
dtScopedDelete<unsigned short> neiRegs(layer.regCount + 1);
|
|
dtScopedDelete<unsigned short> newNeiRegs(layer.regCount + 1);
|
|
int nneiRegs = 0;
|
|
int nnewNeiRegs = 0;
|
|
|
|
for (int i = 0; i < clusters.nregs; i++)
|
|
{
|
|
if (clusters.regMap[i] != 0xffff)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
bool bCanAddCluster = true;
|
|
int newClusterId = clusters.nclusters;
|
|
nneiRegs = 0;
|
|
|
|
for (int ic = 0; ic < lcset.nconts; ic++)
|
|
{
|
|
// there could be more than one contour per region...
|
|
dtTileCacheContour& cont = lcset.conts[ic];
|
|
if (cont.reg != (unsigned short)(i) || cont.area == DT_TILECACHE_NULL_AREA)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (bCanAddCluster)
|
|
{
|
|
dtAssert(newClusterId < std::numeric_limits<unsigned short>::max());
|
|
clusters.regMap[i] = (unsigned short)newClusterId;
|
|
clusters.nclusters++;
|
|
bCanAddCluster = false;
|
|
}
|
|
|
|
for (int j = 0; j < nlinks[ic]; j++)
|
|
{
|
|
unsigned short neiReg = (unsigned short)(links[linksBase[ic] + j]);
|
|
addUniqueRegion(neiRegs, neiReg, nneiRegs);
|
|
}
|
|
}
|
|
|
|
while (nneiRegs > 0)
|
|
{
|
|
nnewNeiRegs = 0;
|
|
for (int ir = 0; ir < nneiRegs; ir++)
|
|
{
|
|
if ((neiRegs[ir] >= clusters.nregs) || (clusters.regMap[neiRegs[ir]] != 0xffff))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
for (int ic = 0; ic < lcset.nconts; ic++)
|
|
{
|
|
// there could be more than one contour per region...
|
|
dtTileCacheContour& cont = lcset.conts[ic];
|
|
if (cont.reg != (unsigned short)neiRegs[ir] || cont.area == DT_TILECACHE_NULL_AREA)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
dtAssert(newClusterId < std::numeric_limits<unsigned short>::max());
|
|
clusters.regMap[cont.reg] = (unsigned short)newClusterId;
|
|
for (int j = 0; j < nlinks[ic]; j++)
|
|
{
|
|
unsigned short neiReg = (unsigned short)(links[linksBase[ic] + j]);
|
|
addUniqueRegion(newNeiRegs, neiReg, nnewNeiRegs);
|
|
}
|
|
}
|
|
}
|
|
|
|
nneiRegs = nnewNeiRegs;
|
|
memcpy(neiRegs, newNeiRegs, sizeof(unsigned short)* nnewNeiRegs);
|
|
}
|
|
}
|
|
#endif // WITH_NAVMESH_CLUSTER_LINKS
|
|
//@UE END
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
static const int VERTEX_BUCKET_COUNT2 = (1<<8);
|
|
|
|
inline int computeVertexHash2(int x, int y, int z)
|
|
{
|
|
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
|
|
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
|
|
const unsigned int h3 = 0xcb1ab31f;
|
|
unsigned int n = h1 * x + h2 * y + h3 * z;
|
|
return (int)(n & (VERTEX_BUCKET_COUNT2-1));
|
|
}
|
|
|
|
static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
|
|
unsigned short* verts, unsigned short* firstVert, unsigned short* nextVert, int& nv)
|
|
{
|
|
int bucket = computeVertexHash2(x, 0, z);
|
|
unsigned short i = firstVert[bucket];
|
|
|
|
while (i != DT_TILECACHE_NULL_IDX)
|
|
{
|
|
const unsigned short* v = &verts[i*3];
|
|
if (v[0] == x && v[2] == z && (dtAbs(v[1] - y) <= 2))
|
|
return i;
|
|
i = nextVert[i]; // next
|
|
}
|
|
|
|
// Could not find, create new.
|
|
i = (unsigned short)nv; nv++;
|
|
unsigned short* v = &verts[i*3];
|
|
v[0] = x;
|
|
v[1] = y;
|
|
v[2] = z;
|
|
nextVert[i] = firstVert[bucket];
|
|
firstVert[bucket] = i;
|
|
|
|
return (unsigned short)i;
|
|
}
|
|
|
|
namespace TileCacheData
|
|
{
|
|
struct dtEdge
|
|
{
|
|
unsigned short vert[2]; // index in verts (a,b)
|
|
unsigned short polyEdge[2]; // index in polys (a,b)
|
|
unsigned short poly[2];
|
|
};
|
|
}
|
|
|
|
static bool buildMeshAdjacency(dtTileCacheAlloc* alloc,
|
|
unsigned short* polys, const int npolys,
|
|
const unsigned short* verts, const int nverts,
|
|
const dtTileCacheContourSet& lcset,
|
|
const int walkableClimb)
|
|
{
|
|
// Based on code by Eric Lengyel from:
|
|
// http://www.terathon.com/code/edges.php
|
|
|
|
const int maxEdgeCount = npolys*MAX_VERTS_PER_POLY;
|
|
dtFixedArray<unsigned short> firstEdge(alloc, nverts + maxEdgeCount);
|
|
if (!firstEdge)
|
|
return false;
|
|
unsigned short* nextEdge = firstEdge + nverts;
|
|
int edgeCount = 0;
|
|
|
|
dtFixedArray<TileCacheData::dtEdge> edges(alloc, maxEdgeCount);
|
|
if (!edges)
|
|
return false;
|
|
|
|
for (int i = 0; i < nverts; i++)
|
|
firstEdge[i] = DT_TILECACHE_NULL_IDX;
|
|
|
|
// Add edges
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
const unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
{
|
|
if (t[j] == DT_TILECACHE_NULL_IDX)
|
|
break;
|
|
|
|
const unsigned short v0 = t[j];
|
|
const unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
if (v0 < v1)
|
|
{
|
|
TileCacheData::dtEdge& edge = edges[edgeCount];
|
|
edge.vert[0] = v0;
|
|
edge.vert[1] = v1;
|
|
edge.poly[0] = (unsigned short)i;
|
|
edge.polyEdge[0] = (unsigned short)j;
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = 0xff;
|
|
// Insert edge
|
|
nextEdge[edgeCount] = firstEdge[v0];
|
|
firstEdge[v0] = (unsigned short)edgeCount;
|
|
edgeCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find matching edges
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
const unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
{
|
|
if (t[j] == DT_TILECACHE_NULL_IDX)
|
|
break;
|
|
|
|
unsigned short v0 = t[j];
|
|
unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
if (v0 > v1)
|
|
{
|
|
bool found = false;
|
|
for (unsigned short e = firstEdge[v1]; e != DT_TILECACHE_NULL_IDX; e = nextEdge[e])
|
|
{
|
|
TileCacheData::dtEdge& edge = edges[e];
|
|
if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
|
|
{
|
|
// Edges matches
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = (unsigned short)j;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
// Matching edge not found, it is an open edge, add it.
|
|
TileCacheData::dtEdge& edge = edges[edgeCount];
|
|
edge.vert[0] = v1;
|
|
edge.vert[1] = v0;
|
|
edge.poly[0] = (unsigned short)i;
|
|
edge.polyEdge[0] = (unsigned short)j;
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = 0xff;
|
|
|
|
// Insert edge
|
|
nextEdge[edgeCount] = firstEdge[v1];
|
|
firstEdge[v1] = (unsigned short)edgeCount;
|
|
edgeCount++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark portal edges.
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
const dtTileCacheContour& cont = lcset.conts[i];
|
|
if (cont.nverts < 3)
|
|
continue;
|
|
|
|
for (int j = 0, k = cont.nverts-1; j < cont.nverts; k=j++)
|
|
{
|
|
const unsigned short* va = &cont.verts[k*4];
|
|
const unsigned short* vb = &cont.verts[j*4];
|
|
|
|
const unsigned char dir = va[3] & 0xf;
|
|
if (dir == 0xf)
|
|
continue;
|
|
|
|
if (dir == 0 || dir == 2)
|
|
{
|
|
// Find matching edge on z axis
|
|
const unsigned short x = va[0];
|
|
unsigned short zmin = va[2];
|
|
unsigned short zmax = vb[2];
|
|
unsigned short ya = va[1];
|
|
unsigned short yb = vb[1];
|
|
if (zmin > zmax)
|
|
{
|
|
dtSwap(zmin, zmax);
|
|
dtSwap(ya, yb);
|
|
}
|
|
|
|
for (int m = 0; m < edgeCount; ++m)
|
|
{
|
|
TileCacheData::dtEdge& e = edges[m];
|
|
// Skip connected edges.
|
|
if (e.poly[0] != e.poly[1])
|
|
continue;
|
|
|
|
const unsigned short* eva = &verts[e.vert[0]*3];
|
|
const unsigned short* evb = &verts[e.vert[1]*3];
|
|
if (eva[0] == x && evb[0] == x)
|
|
{
|
|
unsigned short ezmin = eva[2];
|
|
unsigned short ezmax = evb[2];
|
|
unsigned short eya = eva[1];
|
|
unsigned short eyb = evb[1];
|
|
if (ezmin > ezmax)
|
|
{
|
|
dtSwap(ezmin, ezmax);
|
|
dtSwap(eya, eyb);
|
|
}
|
|
|
|
if (overlapRangeExl(zmin,zmax, ezmin, ezmax, ya, eya, yb, eyb, walkableClimb))
|
|
{
|
|
// Reuse the other polyedge to store dir.
|
|
e.polyEdge[1] = dir;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Find matching edge on x axis
|
|
const unsigned short z = va[2];
|
|
unsigned short xmin = va[0];
|
|
unsigned short xmax = vb[0];
|
|
unsigned short ya = va[1];
|
|
unsigned short yb = vb[1];
|
|
if (xmin > xmax)
|
|
{
|
|
dtSwap(xmin, xmax);
|
|
dtSwap(ya, yb);
|
|
}
|
|
|
|
for (int m = 0; m < edgeCount; ++m)
|
|
{
|
|
TileCacheData::dtEdge& e = edges[m];
|
|
// Skip connected edges.
|
|
if (e.poly[0] != e.poly[1])
|
|
continue;
|
|
const unsigned short* eva = &verts[e.vert[0]*3];
|
|
const unsigned short* evb = &verts[e.vert[1]*3];
|
|
if (eva[2] == z && evb[2] == z)
|
|
{
|
|
unsigned short exmin = eva[0];
|
|
unsigned short exmax = evb[0];
|
|
unsigned short eya = eva[1];
|
|
unsigned short eyb = evb[1];
|
|
if (exmin > exmax)
|
|
{
|
|
dtSwap(exmin, exmax);
|
|
dtSwap(eya, eyb);
|
|
}
|
|
|
|
if (overlapRangeExl(xmin,xmax, exmin, exmax, ya, eya, yb, eyb, walkableClimb))
|
|
{
|
|
// Reuse the other polyedge to store dir.
|
|
e.polyEdge[1] = dir;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Store adjacency
|
|
// Adjacency between poly is store in the second arrays of polys.
|
|
for (int i = 0; i < edgeCount; ++i)
|
|
{
|
|
const TileCacheData::dtEdge& e = edges[i];
|
|
if (e.poly[0] != e.poly[1])
|
|
{
|
|
// If not the same poly, store the direction of the portal.
|
|
unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
unsigned short* p1 = &polys[e.poly[1]*MAX_VERTS_PER_POLY*2];
|
|
p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = e.poly[1];
|
|
p1[MAX_VERTS_PER_POLY + e.polyEdge[1]] = e.poly[0];
|
|
}
|
|
else if (e.polyEdge[1] != 0xff) // if we have a direction
|
|
{
|
|
// Same poly
|
|
unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = 0x8000 | (unsigned short)e.polyEdge[1];
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace TileCacheFunc
|
|
{
|
|
inline int prev(int i, int n) { return i - 1 >= 0 ? i - 1 : n - 1; }
|
|
inline int next(int i, int n) { return i + 1 < n ? i + 1 : 0; }
|
|
|
|
inline int area2(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]);
|
|
}
|
|
|
|
// Exclusive or: true iff exactly one argument is true.
|
|
// The arguments are negated to ensure that they are 0/1
|
|
// values. Then the bitwise Xor operator may apply.
|
|
// (This idea is due to Michael Baldwin.)
|
|
inline bool xorb(bool x, bool y)
|
|
{
|
|
return !x ^ !y;
|
|
}
|
|
|
|
// Returns true iff c is strictly to the left of the directed
|
|
// line through a to b.
|
|
inline bool left(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return area2(a, b, c) < 0;
|
|
}
|
|
|
|
inline bool leftOn(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return area2(a, b, c) <= 0;
|
|
}
|
|
|
|
inline bool collinear(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return area2(a, b, c) == 0;
|
|
}
|
|
}
|
|
|
|
// Returns true iff ab properly intersects cd: they share
|
|
// a point interior to both segments. The properness of the
|
|
// intersection is ensured by using strict leftness.
|
|
static bool intersectProp(const unsigned short* a, const unsigned short* b,
|
|
const unsigned short* c, const unsigned short* d)
|
|
{
|
|
// Eliminate improper cases.
|
|
if (TileCacheFunc::collinear(a, b, c) || TileCacheFunc::collinear(a, b, d) ||
|
|
TileCacheFunc::collinear(c, d, a) || TileCacheFunc::collinear(c, d, b))
|
|
return false;
|
|
|
|
return TileCacheFunc::xorb(TileCacheFunc::left(a, b, c), TileCacheFunc::left(a, b, d)) &&
|
|
TileCacheFunc::xorb(TileCacheFunc::left(c, d, a), TileCacheFunc::left(c, d, b));
|
|
}
|
|
|
|
// Returns T iff (a,b,c) are collinear and point c lies
|
|
// on the closed segement ab.
|
|
static bool between(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
if (!TileCacheFunc::collinear(a, b, c))
|
|
return false;
|
|
// If ab not vertical, check betweenness on x; else on y.
|
|
if (a[0] != b[0])
|
|
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
|
|
else
|
|
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
|
|
}
|
|
|
|
// Returns true iff segments ab and cd intersect, properly or improperly.
|
|
static bool intersect(const unsigned short* a, const unsigned short* b,
|
|
const unsigned short* c, const unsigned short* d)
|
|
{
|
|
if (intersectProp(a, b, c, d))
|
|
return true;
|
|
else if (between(a, b, c) || between(a, b, d) ||
|
|
between(c, d, a) || between(c, d, b))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static bool vequal(const unsigned short* a, const unsigned short* b)
|
|
{
|
|
return a[0] == b[0] && a[2] == b[2];
|
|
}
|
|
|
|
// Returns T iff (v_i, v_j) is a proper internal *or* external
|
|
// diagonal of P, *ignoring edges incident to v_i and v_j*.
|
|
static bool diagonalie(int i, int j, int n, const unsigned short* verts, const unsigned short* indices)
|
|
{
|
|
const unsigned short* d0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned short* d1 = &verts[(indices[j] & 0x7fff) * 4];
|
|
|
|
// For each edge (k,k+1) of P
|
|
for (int k = 0; k < n; k++)
|
|
{
|
|
int k1 = TileCacheFunc::next(k, n);
|
|
// Skip edges incident to i or j
|
|
if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
|
|
{
|
|
const unsigned short* p0 = &verts[(indices[k] & 0x7fff) * 4];
|
|
const unsigned short* p1 = &verts[(indices[k1] & 0x7fff) * 4];
|
|
|
|
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
|
|
continue;
|
|
|
|
if (intersect(d0, d1, p0, p1))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true iff the diagonal (i,j) is strictly internal to the
|
|
// polygon P in the neighborhood of the i endpoint.
|
|
static bool inCone(int i, int j, int n, const unsigned short* verts, const unsigned short* indices)
|
|
{
|
|
const unsigned short* vi = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned short* vj = &verts[(indices[j] & 0x7fff) * 4];
|
|
const unsigned short* vi1 = &verts[(indices[TileCacheFunc::next(i, n)] & 0x7fff) * 4];
|
|
const unsigned short* vin1 = &verts[(indices[TileCacheFunc::prev(i, n)] & 0x7fff) * 4];
|
|
|
|
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
|
|
if (TileCacheFunc::leftOn(vin1, vi, vi1))
|
|
return TileCacheFunc::left(vi, vj, vin1) && TileCacheFunc::left(vj, vi, vi1);
|
|
// Assume (i-1,i,i+1) not collinear.
|
|
// else P[i] is reflex.
|
|
return !(TileCacheFunc::leftOn(vi, vj, vi1) && TileCacheFunc::leftOn(vj, vi, vin1));
|
|
}
|
|
|
|
// Returns T iff (v_i, v_j) is a proper internal
|
|
// diagonal of P.
|
|
static bool diagonal(int i, int j, int n, const unsigned short* verts, const unsigned short* indices)
|
|
{
|
|
return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
|
|
}
|
|
|
|
static int triangulate(int n, const unsigned short* verts, unsigned short* indices, unsigned short* tris)
|
|
{
|
|
int ntris = 0;
|
|
unsigned short* dst = tris;
|
|
|
|
// The last bit of the index is used to indicate if the vertex can be removed.
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
int i1 = TileCacheFunc::next(i, n);
|
|
int i2 = TileCacheFunc::next(i1, n);
|
|
if (diagonal(i, i2, n, verts, indices))
|
|
indices[i1] |= 0x8000;
|
|
}
|
|
|
|
while (n > 3)
|
|
{
|
|
int minLen = -1;
|
|
int mini = -1;
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
int i1 = TileCacheFunc::next(i, n);
|
|
if (indices[i1] & 0x8000)
|
|
{
|
|
const unsigned short* p0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned short* p2 = &verts[(indices[TileCacheFunc::next(i1, n)] & 0x7fff) * 4];
|
|
|
|
const int dx = (int)p2[0] - (int)p0[0];
|
|
const int dz = (int)p2[2] - (int)p0[2];
|
|
const int len = dx*dx + dz*dz;
|
|
if (minLen < 0 || len < minLen)
|
|
{
|
|
minLen = len;
|
|
mini = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mini == -1)
|
|
{
|
|
// Should not happen.
|
|
/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
printf("%d ", indices[i] & 0x0fffffff);
|
|
}
|
|
printf("\n");*/
|
|
return -ntris;
|
|
}
|
|
|
|
int i = mini;
|
|
int i1 = TileCacheFunc::next(i, n);
|
|
int i2 = TileCacheFunc::next(i1, n);
|
|
|
|
*dst++ = indices[i] & 0x7fff;
|
|
*dst++ = indices[i1] & 0x7fff;
|
|
*dst++ = indices[i2] & 0x7fff;
|
|
ntris++;
|
|
|
|
// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
|
|
n--;
|
|
for (int k = i1; k < n; k++)
|
|
indices[k] = indices[k+1];
|
|
|
|
if (i1 >= n)
|
|
i1 = 0;
|
|
|
|
i = TileCacheFunc::prev(i1, n);
|
|
|
|
// Update diagonal flags.
|
|
if (diagonal(TileCacheFunc::prev(i, n), i1, n, verts, indices))
|
|
indices[i] |= 0x8000;
|
|
else
|
|
indices[i] &= 0x7fff;
|
|
|
|
if (diagonal(i, TileCacheFunc::next(i1, n), n, verts, indices))
|
|
indices[i1] |= 0x8000;
|
|
else
|
|
indices[i1] &= 0x7fff;
|
|
}
|
|
|
|
// Append the remaining triangle.
|
|
*dst++ = indices[0] & 0x7fff;
|
|
*dst++ = indices[1] & 0x7fff;
|
|
*dst++ = indices[2] & 0x7fff;
|
|
ntris++;
|
|
|
|
return ntris;
|
|
}
|
|
|
|
|
|
static int countPolyVerts(const unsigned short* p)
|
|
{
|
|
for (int i = 0; i < MAX_VERTS_PER_POLY; ++i)
|
|
if (p[i] == DT_TILECACHE_NULL_IDX)
|
|
return i;
|
|
return MAX_VERTS_PER_POLY;
|
|
}
|
|
|
|
namespace TileCacheFunc
|
|
{
|
|
inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
|
|
((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
|
|
}
|
|
}
|
|
|
|
static int getPolyMergeValue(const unsigned short* pa, const unsigned short* pb,
|
|
const unsigned short* verts, int& ea, int& eb)
|
|
{
|
|
const int na = countPolyVerts(pa);
|
|
const int nb = countPolyVerts(pb);
|
|
|
|
// If the merged polygon would be too big, do not merge.
|
|
if (na+nb-2 > MAX_VERTS_PER_POLY)
|
|
return -1;
|
|
|
|
// Check if the polygons share an edge.
|
|
ea = -1;
|
|
eb = -1;
|
|
|
|
for (int i = 0; i < na; ++i)
|
|
{
|
|
unsigned short va0 = pa[i];
|
|
unsigned short va1 = pa[(i+1) % na];
|
|
if (va0 > va1)
|
|
dtSwap(va0, va1);
|
|
for (int j = 0; j < nb; ++j)
|
|
{
|
|
unsigned short vb0 = pb[j];
|
|
unsigned short vb1 = pb[(j+1) % nb];
|
|
if (vb0 > vb1)
|
|
dtSwap(vb0, vb1);
|
|
if (va0 == vb0 && va1 == vb1)
|
|
{
|
|
ea = i;
|
|
eb = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// No common edge, cannot merge.
|
|
if (ea == -1 || eb == -1)
|
|
return -1;
|
|
|
|
// Check to see if the merged polygon would be convex.
|
|
unsigned short va, vb, vc;
|
|
|
|
va = pa[(ea+na-1) % na];
|
|
vb = pa[ea];
|
|
vc = pb[(eb+2) % nb];
|
|
if (!TileCacheFunc::uleft(&verts[va * 3], &verts[vb * 3], &verts[vc * 3]))
|
|
return -1;
|
|
|
|
va = pb[(eb+nb-1) % nb];
|
|
vb = pb[eb];
|
|
vc = pa[(ea+2) % na];
|
|
if (!TileCacheFunc::uleft(&verts[va * 3], &verts[vb * 3], &verts[vc * 3]))
|
|
return -1;
|
|
|
|
va = pa[ea];
|
|
vb = pa[(ea+1)%na];
|
|
|
|
int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
|
|
int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
|
|
|
|
return dx*dx + dy*dy;
|
|
}
|
|
|
|
static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb)
|
|
{
|
|
unsigned short tmp[MAX_VERTS_PER_POLY*2];
|
|
|
|
const int na = countPolyVerts(pa);
|
|
const int nb = countPolyVerts(pb);
|
|
|
|
// Merge polygons.
|
|
memset(tmp, 0xff, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
int n = 0;
|
|
// Add pa
|
|
for (int i = 0; i < na-1; ++i)
|
|
tmp[n++] = pa[(ea+1+i) % na];
|
|
// Add pb
|
|
for (int i = 0; i < nb-1; ++i)
|
|
tmp[n++] = pb[(eb+1+i) % nb];
|
|
|
|
memcpy(pa, tmp, sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
}
|
|
|
|
|
|
static void pushFront(unsigned short v, unsigned short* arr, int& an)
|
|
{
|
|
an++;
|
|
for (int i = an-1; i > 0; --i)
|
|
arr[i] = arr[i-1];
|
|
arr[0] = v;
|
|
}
|
|
|
|
static void pushBack(unsigned short v, unsigned short* arr, int& an)
|
|
{
|
|
arr[an] = v;
|
|
an++;
|
|
}
|
|
|
|
static bool canRemoveVertex(dtTileCachePolyMesh& mesh, const unsigned short rem)
|
|
{
|
|
// Count number of polygons to remove.
|
|
int numRemovedVerts = 0;
|
|
int numTouchedVerts = 0;
|
|
int numRemainingEdges = 0;
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
const unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
int numRemoved = 0;
|
|
int numVerts = 0;
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] == rem)
|
|
{
|
|
numTouchedVerts++;
|
|
numRemoved++;
|
|
}
|
|
numVerts++;
|
|
}
|
|
if (numRemoved)
|
|
{
|
|
numRemovedVerts += numRemoved;
|
|
numRemainingEdges += numVerts-(numRemoved+1);
|
|
}
|
|
}
|
|
|
|
// There would be too few edges remaining to create a polygon.
|
|
// This can happen for example when a tip of a triangle is marked
|
|
// as deletion, but there are no other polys that share the vertex.
|
|
// In this case, the vertex should not be removed.
|
|
if (numRemainingEdges <= 2)
|
|
return false;
|
|
|
|
// Check that there is enough memory for the test.
|
|
const int maxEdges = numTouchedVerts*2;
|
|
if (maxEdges > MAX_REM_EDGES)
|
|
return false;
|
|
|
|
// Find edges which share the removed vertex.
|
|
unsigned short edges[MAX_REM_EDGES*3];
|
|
int nedges = 0;
|
|
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
const unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
|
|
// Collect edges which touches the removed vertex.
|
|
for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
{
|
|
if (p[j] == rem || p[k] == rem)
|
|
{
|
|
// Arrange edge so that a=rem.
|
|
int a = p[j], b = p[k];
|
|
if (b == rem)
|
|
dtSwap(a,b);
|
|
|
|
// Check if the edge exists
|
|
bool exists = false;
|
|
for (int m = 0; m < nedges; ++m)
|
|
{
|
|
unsigned short* e = &edges[m*3];
|
|
if (e[1] == b)
|
|
{
|
|
// Exists, increment vertex share count.
|
|
e[2]++;
|
|
exists = true;
|
|
}
|
|
}
|
|
// Add new edge.
|
|
if (!exists)
|
|
{
|
|
unsigned short* e = &edges[nedges*3];
|
|
e[0] = (unsigned short)a;
|
|
e[1] = (unsigned short)b;
|
|
e[2] = 1;
|
|
nedges++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// There should be no more than 2 open edges.
|
|
// This catches the case that two non-adjacent polygons
|
|
// share the removed vertex. In that case, do not remove the vertex.
|
|
int numOpenEdges = 0;
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
if (edges[i*3+2] < 2)
|
|
numOpenEdges++;
|
|
}
|
|
if (numOpenEdges > 2)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static dtStatus removeVertex(dtTileCacheLogContext* ctx, dtTileCachePolyMesh& mesh, const unsigned short rem, const int maxTris)
|
|
{
|
|
// Count number of polygons to remove.
|
|
int numRemovedVerts = 0;
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
const unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] == rem)
|
|
numRemovedVerts++;
|
|
}
|
|
}
|
|
|
|
int nedges = 0;
|
|
int nhole = 0;
|
|
int nharea = 0;
|
|
unsigned short edgesStatic[MAX_REM_EDGES * 3];
|
|
unsigned short holeStatic[MAX_REM_EDGES];
|
|
unsigned short hareaStatic[MAX_REM_EDGES];
|
|
|
|
const int MaxRemovedVertsStatic = MAX_REM_EDGES / mesh.nvp;
|
|
const int DynamicAllocSize = (numRemovedVerts > MaxRemovedVertsStatic) ? (numRemovedVerts * mesh.nvp) : 0;
|
|
dtScopedDelete<unsigned short> edgesDynamic(DynamicAllocSize * 4);
|
|
dtScopedDelete<unsigned short> holeDynamic(DynamicAllocSize);
|
|
dtScopedDelete<unsigned short> hareaDynamic(DynamicAllocSize);
|
|
|
|
unsigned short* edges = (DynamicAllocSize > 0) ? edgesDynamic.get() : edgesStatic;
|
|
unsigned short* hole = (DynamicAllocSize > 0) ? holeDynamic.get() : holeStatic;
|
|
unsigned short* harea = (DynamicAllocSize > 0) ? hareaDynamic.get() : hareaStatic;
|
|
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
bool hasRem = false;
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] == rem)
|
|
{
|
|
hasRem = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hasRem)
|
|
{
|
|
// Collect edges which does not touch the removed vertex.
|
|
for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
{
|
|
if (p[j] != rem && p[k] != rem)
|
|
{
|
|
unsigned short* e = &edges[nedges*3];
|
|
e[0] = p[k];
|
|
e[1] = p[j];
|
|
e[2] = mesh.areas[i];
|
|
nedges++;
|
|
}
|
|
}
|
|
|
|
// Remove the polygon p.
|
|
const unsigned short* lastp = &mesh.polys[(mesh.npolys-1)*MAX_VERTS_PER_POLY*2];
|
|
memcpy(p, lastp, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
mesh.areas[i] = mesh.areas[mesh.npolys-1];
|
|
mesh.npolys--;
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Remove vertex.
|
|
for (int i = (int)rem; i < (mesh.nverts - 1); ++i)
|
|
{
|
|
mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
|
|
mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
|
|
mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
|
|
}
|
|
mesh.nverts--;
|
|
|
|
// Adjust indices to match the removed vertex layout.
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] > rem)
|
|
p[j]--;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
if (edges[i*3+0] > rem) edges[i*3+0]--;
|
|
if (edges[i*3+1] > rem) edges[i*3+1]--;
|
|
}
|
|
|
|
if (nedges == 0)
|
|
return DT_SUCCESS;
|
|
|
|
// Start with one vertex, keep appending connected
|
|
// segments to the start and end of the hole.
|
|
pushBack(edges[0], hole, nhole);
|
|
pushBack(edges[2], harea, nharea);
|
|
|
|
while (nedges)
|
|
{
|
|
bool match = false;
|
|
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
const unsigned short ea = edges[i*3+0];
|
|
const unsigned short eb = edges[i*3+1];
|
|
const unsigned short area = edges[i*3+2];
|
|
bool add = false;
|
|
if (hole[0] == eb)
|
|
{
|
|
// The segment matches the beginning of the hole boundary.
|
|
pushFront(ea, hole, nhole);
|
|
pushFront(area, harea, nharea);
|
|
add = true;
|
|
}
|
|
else if (hole[nhole-1] == ea)
|
|
{
|
|
// The segment matches the end of the hole boundary.
|
|
pushBack(eb, hole, nhole);
|
|
pushBack(area, harea, nharea);
|
|
add = true;
|
|
}
|
|
|
|
if (add)
|
|
{
|
|
// The edge segment was added, remove it.
|
|
edges[i*3+0] = edges[(nedges-1)*3+0];
|
|
edges[i*3+1] = edges[(nedges-1)*3+1];
|
|
edges[i*3+2] = edges[(nedges-1)*3+2];
|
|
--nedges;
|
|
match = true;
|
|
--i;
|
|
}
|
|
}
|
|
|
|
if (!match)
|
|
break;
|
|
}
|
|
|
|
// Remove duplicate vertex at end.
|
|
if (nhole > 0)
|
|
{
|
|
if (hole[0] == hole[nhole-1])
|
|
nhole--;
|
|
}
|
|
|
|
// Skip degenerated areas.
|
|
if (nhole < 3)
|
|
return DT_SUCCESS;
|
|
|
|
unsigned short trisStatic[MAX_REM_EDGES * 3];
|
|
unsigned short tvertsStatic[MAX_REM_EDGES * 3];
|
|
unsigned short tpolyStatic[MAX_REM_EDGES * 3];
|
|
|
|
const int DynamicAllocSize2 = (nhole * 4) > (MAX_REM_EDGES * 3) ? nhole : 0;
|
|
dtScopedDelete<unsigned short> trisDynamic(DynamicAllocSize2 * 3);
|
|
dtScopedDelete<unsigned short> tvertsDynamic(DynamicAllocSize2 * 4);
|
|
dtScopedDelete<unsigned short> tpolyDynamic(DynamicAllocSize2);
|
|
|
|
unsigned short* tris = (DynamicAllocSize2 > 0) ? trisDynamic.get() : trisStatic;
|
|
unsigned short* tverts = (DynamicAllocSize2 > 0) ? tvertsDynamic.get() : tvertsStatic;
|
|
unsigned short* tpoly = (DynamicAllocSize2 > 0) ? tpolyDynamic.get() : tpolyStatic;
|
|
|
|
// Generate temp vertex array for triangulation.
|
|
for (int i = 0; i < nhole; ++i)
|
|
{
|
|
const unsigned short hi = hole[i];
|
|
tverts[i*4+0] = mesh.verts[hi*3+0];
|
|
tverts[i*4+1] = mesh.verts[hi*3+1];
|
|
tverts[i*4+2] = mesh.verts[hi*3+2];
|
|
tverts[i*4+3] = 0;
|
|
tpoly[i] = (unsigned short)i;
|
|
}
|
|
|
|
// Triangulate the hole.
|
|
int ntris = triangulate(nhole, tverts, tpoly, tris);
|
|
if (ntris < 0)
|
|
{
|
|
ntris = -ntris;
|
|
}
|
|
|
|
unsigned short polysStatic[MAX_REM_EDGES*MAX_VERTS_PER_POLY];
|
|
unsigned char pareasStatic[MAX_REM_EDGES];
|
|
|
|
const int DynamicAllocSize3 = ((ntris + 1) > MAX_REM_EDGES) ? (ntris + 1) : 0;
|
|
dtScopedDelete<unsigned short> polysDynamic(DynamicAllocSize3 * MAX_VERTS_PER_POLY);
|
|
dtScopedDelete<unsigned char> pareasDynamic(DynamicAllocSize3);
|
|
|
|
unsigned short* polys = (DynamicAllocSize3 > 0) ? polysDynamic.get() : polysStatic;
|
|
unsigned char* pareas = (DynamicAllocSize3 > 0) ? pareasDynamic.get() : pareasStatic;
|
|
|
|
// Build initial polygons.
|
|
int npolys = 0;
|
|
memset(polys, 0xff, ntris*MAX_VERTS_PER_POLY*sizeof(unsigned short));
|
|
for (int j = 0; j < ntris; ++j)
|
|
{
|
|
unsigned short* t = &tris[j*3];
|
|
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
{
|
|
polys[npolys*MAX_VERTS_PER_POLY+0] = hole[t[0]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+1] = hole[t[1]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+2] = hole[t[2]];
|
|
pareas[npolys] = (unsigned char)harea[t[0]];
|
|
npolys++;
|
|
}
|
|
}
|
|
if (!npolys)
|
|
return DT_SUCCESS;
|
|
|
|
// Merge polygons.
|
|
int maxVertsPerPoly = MAX_VERTS_PER_POLY;
|
|
if (maxVertsPerPoly > 3) //-V547
|
|
{
|
|
for (;;)
|
|
{
|
|
// Find best polygons to merge.
|
|
int bestMergeVal = 0;
|
|
int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
for (int j = 0; j < npolys-1; ++j)
|
|
{
|
|
unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = j+1; k < npolys; ++k)
|
|
{
|
|
unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
int ea, eb;
|
|
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
if (v > bestMergeVal)
|
|
{
|
|
bestMergeVal = v;
|
|
bestPa = j;
|
|
bestPb = k;
|
|
bestEa = ea;
|
|
bestEb = eb;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bestMergeVal > 0)
|
|
{
|
|
// Found best, merge.
|
|
unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
mergePolys(pa, pb, bestEa, bestEb);
|
|
memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
pareas[bestPb] = pareas[npolys-1];
|
|
npolys--;
|
|
}
|
|
else
|
|
{
|
|
// Could not merge any polygons, stop.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store polygons.
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
if (mesh.npolys >= maxTris)
|
|
break;
|
|
|
|
unsigned short* newPoly = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
memset(newPoly,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
{
|
|
newPoly[j] = polys[i*MAX_VERTS_PER_POLY+j];
|
|
}
|
|
mesh.areas[mesh.npolys] = pareas[i];
|
|
mesh.npolys++;
|
|
if (mesh.npolys > maxTris)
|
|
{
|
|
if (ctx)
|
|
ctx->dtLog("removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc,
|
|
dtTileCacheLogContext* ctx,
|
|
dtTileCacheContourSet& lcset,
|
|
dtTileCachePolyMesh& mesh,
|
|
const int walkableClimb)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
int maxVertices = 0;
|
|
int maxTris = 0;
|
|
int maxVertsPerCont = 0;
|
|
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
// Skip null contours.
|
|
if (lcset.conts[i].nverts < 3 || lcset.conts[i].area == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
maxVertices += lcset.conts[i].nverts;
|
|
maxTris += lcset.conts[i].nverts - 2;
|
|
maxVertsPerCont = dtMax(maxVertsPerCont, lcset.conts[i].nverts);
|
|
}
|
|
|
|
// TODO: warn about too many vertices?
|
|
|
|
mesh.nvp = MAX_VERTS_PER_POLY;
|
|
|
|
// @UE BEGIN: special handling of "no valid contours"
|
|
if (maxVertices == 0)
|
|
{
|
|
// treating this as success because no issues arised
|
|
// there's just nothing to do.
|
|
// Note that 'mesh' properties are properly initialized to 0 at this point
|
|
// by dtAllocTileCachePolyMesh
|
|
return DT_SUCCESS;
|
|
}
|
|
// @UE END
|
|
|
|
dtFixedArray<unsigned char> vflags(alloc, maxVertices);
|
|
if (!vflags)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(vflags, 0, maxVertices);
|
|
|
|
mesh.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVertices*3);
|
|
if (!mesh.verts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.polys = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
if (!mesh.polys)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.areas = (unsigned char*)alloc->alloc(sizeof(unsigned char)*maxTris);
|
|
if (!mesh.areas)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.flags = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris);
|
|
if (!mesh.flags)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.regs = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris);
|
|
if (!mesh.regs)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
// Just allocate and clean the mesh flags array. The user is resposible for filling it.
|
|
memset(mesh.flags, 0, sizeof(unsigned short) * maxTris);
|
|
|
|
mesh.nverts = 0;
|
|
mesh.npolys = 0;
|
|
|
|
memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
|
|
memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
|
|
memset(mesh.regs, 0xff, sizeof(unsigned short)*maxTris);
|
|
|
|
unsigned short firstVert[VERTEX_BUCKET_COUNT2];
|
|
for (int i = 0; i < VERTEX_BUCKET_COUNT2; ++i)
|
|
{
|
|
firstVert[i] = DT_TILECACHE_NULL_IDX;
|
|
}
|
|
|
|
dtFixedArray<unsigned short> nextVert(alloc, maxVertices);
|
|
if (!nextVert)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(nextVert, 0, sizeof(unsigned short)*maxVertices);
|
|
|
|
dtFixedArray<unsigned short> indices(alloc, maxVertsPerCont);
|
|
if (!indices)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> tris(alloc, maxVertsPerCont*3);
|
|
if (!tris)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> polys(alloc, maxVertsPerCont*MAX_VERTS_PER_POLY);
|
|
if (!polys)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
const dtTileCacheContour& cont = lcset.conts[i];
|
|
|
|
// Skip null contours.
|
|
if (cont.nverts < 3 || lcset.conts[i].area == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
// Triangulate contour
|
|
for (int j = 0; j < cont.nverts; ++j)
|
|
indices[j] = (unsigned short)j;
|
|
|
|
int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
|
|
if (ntris <= 0)
|
|
{
|
|
// TODO: issue warning!
|
|
ntris = -ntris;
|
|
}
|
|
|
|
// Add and merge vertices.
|
|
for (int j = 0; j < cont.nverts; ++j)
|
|
{
|
|
const unsigned short* v = &cont.verts[j*4];
|
|
indices[j] = addVertex(v[0], v[1], v[2], mesh.verts, firstVert, nextVert, mesh.nverts);
|
|
if (v[3] & 0x80)
|
|
{
|
|
// This vertex should be removed.
|
|
vflags[indices[j]] = 1;
|
|
}
|
|
}
|
|
|
|
// Build initial polygons.
|
|
int npolys = 0;
|
|
memset(polys, 0xff, sizeof(unsigned short) * maxVertsPerCont * MAX_VERTS_PER_POLY);
|
|
for (int j = 0; j < ntris; ++j)
|
|
{
|
|
const unsigned short* t = &tris[j*3];
|
|
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
{
|
|
polys[npolys*MAX_VERTS_PER_POLY+0] = indices[t[0]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+1] = indices[t[1]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+2] = indices[t[2]];
|
|
npolys++;
|
|
}
|
|
}
|
|
|
|
if (!npolys)
|
|
continue;
|
|
|
|
// Merge polygons.
|
|
int maxVertsPerPoly = MAX_VERTS_PER_POLY;
|
|
if (maxVertsPerPoly > 3) //-V547
|
|
{
|
|
for(;;)
|
|
{
|
|
// Find best polygons to merge.
|
|
int bestMergeVal = 0;
|
|
int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
for (int j = 0; j < npolys-1; ++j)
|
|
{
|
|
unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = j+1; k < npolys; ++k)
|
|
{
|
|
unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
int ea, eb;
|
|
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
if (v > bestMergeVal)
|
|
{
|
|
bestMergeVal = v;
|
|
bestPa = j;
|
|
bestPb = k;
|
|
bestEa = ea;
|
|
bestEb = eb;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bestMergeVal > 0)
|
|
{
|
|
// Found best, merge.
|
|
unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
mergePolys(pa, pb, bestEa, bestEb);
|
|
memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
npolys--;
|
|
}
|
|
else
|
|
{
|
|
// Could not merge any polygons, stop.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store polygons.
|
|
for (int j = 0; j < npolys; ++j)
|
|
{
|
|
unsigned short* newPoly = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
const unsigned short* q = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = 0; k < MAX_VERTS_PER_POLY; ++k)
|
|
newPoly[k] = q[k];
|
|
mesh.areas[mesh.npolys] = cont.area;
|
|
mesh.regs[mesh.npolys] = cont.reg;
|
|
mesh.npolys++;
|
|
if (mesh.npolys > maxTris)
|
|
{
|
|
if (ctx)
|
|
ctx->dtLog("can't store polys! npolys:%d limit:%d", npolys, maxTris);
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Remove edge vertices.
|
|
for (int i = 0; i < mesh.nverts; ++i)
|
|
{
|
|
if (vflags[i])
|
|
{
|
|
if (!canRemoveVertex(mesh, (unsigned short)i))
|
|
continue;
|
|
dtStatus status = removeVertex(ctx, mesh, (unsigned short)i, maxTris);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
|
|
// Remove vertex
|
|
// Note: mesh.nverts is already decremented inside removeVertex()!
|
|
for (int j = i; j < mesh.nverts; ++j)
|
|
{
|
|
vflags[j] = vflags[j+1];
|
|
}
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Calculate adjacency.
|
|
if (!buildMeshAdjacency(alloc, mesh.polys, mesh.npolys, mesh.verts, mesh.nverts, lcset, walkableClimb))
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* pos, const dtReal radius, const dtReal height, const unsigned char areaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
bmin[0] = pos[0] - radius;
|
|
bmin[1] = pos[1];
|
|
bmin[2] = pos[2] - radius;
|
|
bmax[0] = pos[0] + radius;
|
|
bmax[1] = pos[1] + height;
|
|
bmax[2] = pos[2] + radius;
|
|
const dtReal r2 = dtSqr(radius/cs + 0.5f);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f/cs;
|
|
const dtReal ich = 1.0f/ch;
|
|
|
|
const dtReal px = (pos[0]-orig[0])*ics;
|
|
const dtReal pz = (pos[2]-orig[2])*ics;
|
|
|
|
int minx = (int)dtFloor((bmin[0]-orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1]-orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2]-orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0]-orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1]-orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2]-orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x+z*w] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
const dtReal dx = dtReal(x)+0.5f-px;
|
|
const dtReal dz = dtReal(z)+0.5f-pz;
|
|
if (dx*dx + dz*dz > r2)
|
|
continue;
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* pos, const dtReal* extent, const unsigned char areaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
dtVsub(bmin, pos, extent);
|
|
dtVadd(bmax, pos, extent);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f/cs;
|
|
const dtReal ich = 1.0f/ch;
|
|
|
|
int minx = (int)dtFloor((bmin[0]-orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1]-orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2]-orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0]-orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1]-orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2]-orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x+z*w] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
namespace TileCacheFunc
|
|
{
|
|
static int pointInPoly(int nvert, const dtReal* verts, const dtReal* p)
|
|
{
|
|
int i, j, c = 0;
|
|
for (i = 0, j = nvert - 1; i < nvert; j = i++)
|
|
{
|
|
const dtReal* vi = &verts[i * 3];
|
|
const dtReal* vj = &verts[j * 3];
|
|
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
|
|
(p[0] < (vj[0] - vi[0]) * (p[2] - vi[2]) / (vj[2] - vi[2]) + vi[0]))
|
|
c = !c;
|
|
}
|
|
return c;
|
|
}
|
|
}
|
|
|
|
dtStatus dtMarkConvexArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* verts, const int nverts, const dtReal hmin, const dtReal hmax,
|
|
const unsigned char areaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
dtVcopy(bmin, verts);
|
|
dtVcopy(bmax, verts);
|
|
for (int i = 1; i < nverts; ++i)
|
|
{
|
|
dtVmin(bmin, &verts[i*3]);
|
|
dtVmax(bmax, &verts[i*3]);
|
|
}
|
|
bmin[1] = hmin;
|
|
bmax[1] = hmax;
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f/cs;
|
|
const dtReal ich = 1.0f/ch;
|
|
|
|
int minx = (int)dtFloor((bmin[0]-orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1]-orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2]-orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0]-orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1]-orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2]-orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
// TODO: Optimize.
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x+z*w] == DT_TILECACHE_NULL_AREA)
|
|
continue;
|
|
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
|
|
dtReal p[3];
|
|
p[0] = orig[0] + (dtReal(x)+0.5f)*cs;
|
|
p[1] = 0.0f;
|
|
p[2] = orig[2] + (dtReal(z)+0.5f)*cs;
|
|
|
|
if (TileCacheFunc::pointInPoly(nverts, verts, p))
|
|
{
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtReplaceCylinderArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* pos, const dtReal radius, const dtReal height, const unsigned char areaId, const unsigned char filterAreaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
bmin[0] = pos[0] - radius;
|
|
bmin[1] = pos[1];
|
|
bmin[2] = pos[2] - radius;
|
|
bmax[0] = pos[0] + radius;
|
|
bmax[1] = pos[1] + height;
|
|
bmax[2] = pos[2] + radius;
|
|
const dtReal r2 = dtSqr(radius / cs + 0.5f);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f / cs;
|
|
const dtReal ich = 1.0f / ch;
|
|
|
|
const dtReal px = (pos[0] - orig[0])*ics;
|
|
const dtReal pz = (pos[2] - orig[2])*ics;
|
|
|
|
int minx = (int)dtFloor((bmin[0] - orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1] - orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2] - orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0] - orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1] - orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2] - orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w - 1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h - 1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x + z*w] != filterAreaId)
|
|
continue;
|
|
|
|
const dtReal dx = dtReal(x)+0.5f-px;
|
|
const dtReal dz = dtReal(z)+0.5f-pz;
|
|
if (dx*dx + dz*dz > r2)
|
|
continue;
|
|
const int y = layer.heights[x + z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
|
|
layer.areas[x + z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtReplaceBoxArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* pos, const dtReal* extent, const unsigned char areaId, const unsigned char filterAreaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
dtVsub(bmin, pos, extent);
|
|
dtVadd(bmax, pos, extent);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f / cs;
|
|
const dtReal ich = 1.0f / ch;
|
|
|
|
int minx = (int)dtFloor((bmin[0] - orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1] - orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2] - orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0] - orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1] - orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2] - orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w - 1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h - 1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x + z*w] != filterAreaId)
|
|
continue;
|
|
|
|
const int y = layer.heights[x + z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
|
|
layer.areas[x + z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtReplaceConvexArea(dtTileCacheLayer& layer, const dtReal* orig, const dtReal cs, const dtReal ch,
|
|
const dtReal* verts, const int nverts, const dtReal hmin, const dtReal hmax,
|
|
const unsigned char areaId, const unsigned char filterAreaId)
|
|
{
|
|
dtReal bmin[3], bmax[3];
|
|
dtVcopy(bmin, verts);
|
|
dtVcopy(bmax, verts);
|
|
for (int i = 1; i < nverts; ++i)
|
|
{
|
|
dtVmin(bmin, &verts[i * 3]);
|
|
dtVmax(bmax, &verts[i * 3]);
|
|
}
|
|
bmin[1] = hmin;
|
|
bmax[1] = hmax;
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const dtReal ics = 1.0f / cs;
|
|
const dtReal ich = 1.0f / ch;
|
|
|
|
int minx = (int)dtFloor((bmin[0] - orig[0])*ics);
|
|
int miny = (int)dtFloor((bmin[1] - orig[1])*ich);
|
|
int minz = (int)dtFloor((bmin[2] - orig[2])*ics);
|
|
int maxx = (int)dtFloor((bmax[0] - orig[0])*ics);
|
|
int maxy = (int)dtFloor((bmax[1] - orig[1])*ich);
|
|
int maxz = (int)dtFloor((bmax[2] - orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w - 1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h - 1;
|
|
|
|
// TODO: Optimize.
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
if (layer.areas[x + z*w] != filterAreaId)
|
|
continue;
|
|
|
|
const int y = layer.heights[x + z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
|
|
dtReal p[3];
|
|
p[0] = orig[0] + (dtReal(x) + 0.5f)*cs;
|
|
p[1] = 0.0f;
|
|
p[2] = orig[2] + (dtReal(z) + 0.5f)*cs;
|
|
|
|
if (TileCacheFunc::pointInPoly(nverts, verts, p))
|
|
{
|
|
layer.areas[x + z*w] = areaId;
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtReplaceArea(dtTileCacheLayer& layer, const unsigned char areaId, const unsigned char filterAreaId)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const int maxIdx = w * h;
|
|
|
|
for (int i = 0; i < maxIdx; i++)
|
|
{
|
|
if (layer.areas[i] == filterAreaId)
|
|
{
|
|
layer.areas[i] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
//@UE BEGIN
|
|
#if WITH_NAVMESH_CLUSTER_LINKS
|
|
dtStatus dtBuildTileCacheClusters(dtTileCacheAlloc* alloc, dtTileCacheClusterSet& lclusters, dtTileCachePolyMesh& lmesh)
|
|
{
|
|
lclusters.npolys = lmesh.npolys;
|
|
// special handling of "no polys"
|
|
if (lmesh.npolys == 0)
|
|
{
|
|
// treating this as success there's just nothing to do
|
|
// Note that at this point lclusters is properly initialized to 0
|
|
// by dtAllocTileCacheClusterSet
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
lclusters.polyMap = (unsigned short*)alloc->alloc(sizeof(unsigned short)*lclusters.npolys);
|
|
if (!lclusters.polyMap)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset(lclusters.polyMap, 0, sizeof(unsigned short)*lclusters.npolys);
|
|
for (int i = 0; i < lclusters.npolys; i++)
|
|
{
|
|
unsigned short reg = lmesh.regs[i];
|
|
if (reg < lclusters.nregs)
|
|
{
|
|
dtAssert(reg < lclusters.nregs);
|
|
lclusters.polyMap[i] = lclusters.regMap[reg];
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
#endif // WITH_NAVMESH_CLUSTER_LINKS
|
|
//@UE END
|
|
|
|
dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp,
|
|
dtTileCacheLayerHeader* header,
|
|
const unsigned short* heights,
|
|
const unsigned char* areas,
|
|
const unsigned char* cons,
|
|
unsigned char** outData, int* outDataSize)
|
|
{
|
|
const int headerSize = dtAlign(sizeof(dtTileCacheLayerHeader));
|
|
const int gridSize = (int)header->width * (int)header->height;
|
|
const int bufferSize = gridSize * 4;
|
|
const int maxDataSize = headerSize + comp->maxCompressedSize(bufferSize);
|
|
unsigned char* data = (unsigned char*)dtAlloc(maxDataSize, DT_ALLOC_PERM_TILE_DATA);
|
|
if (!data)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(data, 0, maxDataSize);
|
|
|
|
// Store header
|
|
memcpy(data, header, sizeof(dtTileCacheLayerHeader));
|
|
|
|
// Concatenate grid data for compression.
|
|
unsigned char* buffer = (unsigned char*)dtAlloc(bufferSize, DT_ALLOC_TEMP);
|
|
if (!buffer)
|
|
{
|
|
dtFree(data, DT_ALLOC_PERM_TILE_DATA);
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
memcpy(buffer, heights, gridSize*2);
|
|
memcpy(buffer+gridSize*2, areas, gridSize);
|
|
memcpy(buffer+gridSize*3, cons, gridSize);
|
|
|
|
// Compress
|
|
unsigned char* compressed = data + headerSize;
|
|
const int maxCompressedSize = maxDataSize - headerSize;
|
|
int compressedSize = 0;
|
|
dtStatus status = comp->compress(buffer, bufferSize, compressed, maxCompressedSize, &compressedSize);
|
|
|
|
dtFree(buffer, DT_ALLOC_TEMP);
|
|
*outData = data;
|
|
*outDataSize = headerSize + compressedSize;
|
|
|
|
return status;
|
|
}
|
|
|
|
void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer)
|
|
{
|
|
QUICK_SCOPE_CYCLE_COUNTER(dtFreeTileCacheLayer);
|
|
|
|
dtAssert(alloc);
|
|
// The layer is allocated as one contiguous blob of data.
|
|
alloc->free(layer);
|
|
}
|
|
|
|
dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp,
|
|
const unsigned char* compressed, const int compressedSize,
|
|
dtTileCacheLayer** layerOut)
|
|
{
|
|
dtAssert(alloc);
|
|
dtAssert(comp);
|
|
|
|
if (!layerOut)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
if (!compressed)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*layerOut = 0;
|
|
|
|
dtTileCacheLayerHeader* compressedHeader = (dtTileCacheLayerHeader*)compressed;
|
|
if (compressedHeader->version != DT_TILECACHE_VERSION)
|
|
return DT_FAILURE | DT_WRONG_VERSION;
|
|
|
|
const int layerSize = dtAlign(sizeof(dtTileCacheLayer));
|
|
const int headerSize = dtAlign(sizeof(dtTileCacheLayerHeader));
|
|
const int gridSize = (int)compressedHeader->width * (int)compressedHeader->height;
|
|
const int bufferSize = layerSize + headerSize + gridSize*6;
|
|
|
|
unsigned char* buffer = (unsigned char*)alloc->alloc(bufferSize);
|
|
if (!buffer)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(buffer, 0, bufferSize);
|
|
|
|
dtTileCacheLayer* layer = (dtTileCacheLayer*)buffer;
|
|
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)(buffer + layerSize);
|
|
unsigned char* grids = buffer + layerSize + headerSize;
|
|
const int gridsSize = bufferSize - (layerSize + headerSize);
|
|
|
|
// Copy header
|
|
memcpy(header, compressedHeader, headerSize);
|
|
// Decompress grid.
|
|
int size = 0;
|
|
dtStatus status = comp->decompress(compressed+headerSize, compressedSize-headerSize,
|
|
grids, gridsSize, &size);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
dtFree(buffer, DT_ALLOC_TEMP);
|
|
return status;
|
|
}
|
|
|
|
layer->header = header;
|
|
layer->heights = (unsigned short*)grids;
|
|
layer->areas = grids + gridSize*2;
|
|
layer->cons = grids + gridSize*3;
|
|
layer->regs = (unsigned short*)(grids + gridSize*4);
|
|
|
|
*layerOut = layer;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize)
|
|
{
|
|
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
|
|
|
|
int swappedMagic = DT_TILECACHE_MAGIC;
|
|
int swappedVersion = DT_TILECACHE_VERSION;
|
|
dtSwapEndian(&swappedMagic);
|
|
dtSwapEndian(&swappedVersion);
|
|
|
|
if ((header->version != DT_TILECACHE_VERSION) &&
|
|
(header->version != swappedVersion))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
dtSwapEndian(&header->version);
|
|
dtSwapEndian(&header->tx);
|
|
dtSwapEndian(&header->ty);
|
|
dtSwapEndian(&header->tlayer);
|
|
dtSwapEndian(&header->bmin[0]);
|
|
dtSwapEndian(&header->bmin[1]);
|
|
dtSwapEndian(&header->bmin[2]);
|
|
dtSwapEndian(&header->bmax[0]);
|
|
dtSwapEndian(&header->bmax[1]);
|
|
dtSwapEndian(&header->bmax[2]);
|
|
dtSwapEndian(&header->hmin); // @todo: remove
|
|
dtSwapEndian(&header->hmax);
|
|
|
|
dtSwapEndian(&header->width);
|
|
dtSwapEndian(&header->height);
|
|
dtSwapEndian(&header->minx);
|
|
dtSwapEndian(&header->maxx);
|
|
dtSwapEndian(&header->miny);
|
|
dtSwapEndian(&header->maxy);
|
|
|
|
return true;
|
|
}
|
|
|
|
void dtTileCacheLogContext::dtLog(const char* format, ...)
|
|
{
|
|
static const int MSG_SIZE = 512;
|
|
char msg[MSG_SIZE];
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
int len = FCStringAnsi::GetVarArgs(msg, MSG_SIZE, format, ap);
|
|
if (len >= MSG_SIZE)
|
|
{
|
|
len = MSG_SIZE - 1;
|
|
msg[MSG_SIZE - 1] = '\0';
|
|
}
|
|
va_end(ap);
|
|
doDtLog(msg, len);
|
|
}
|