Files
UnrealEngine/Engine/Source/Runtime/Navmesh/Private/Detour/DetourNavMesh.cpp
2025-05-18 13:04:45 +08:00

2972 lines
87 KiB
C++

// Copyright Epic Games, Inc. All Rights Reserved.
// Modified version of Recast/Detour's source file
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "Detour/DetourNavMesh.h"
#include "Detour/DetourCommon.h"
#include "Detour/DetourAssert.h"
DEFINE_LOG_CATEGORY(LogDetour);
#if WITH_NAVMESH_SEGMENT_LINKS
DEFINE_LOG_CATEGORY(LogSegmentLink);
#endif
//@UE BEGIN Adding support for memory tracking.
static dtStatsPostAddTileFunc* sAddTileFunc = nullptr;
static dtStatsPreRemoveTileFunc* sRemoveTileFunc = nullptr;
void dtStatsSetCustom(dtStatsPostAddTileFunc* addFunc, dtStatsPreRemoveTileFunc* removeFunc)
{
sAddTileFunc = addFunc;
sRemoveTileFunc = removeFunc;
}
static void dtStatsPostAddTile(const dtMeshTile& tileAdd)
{
#if DT_STATS
if (sAddTileFunc)
{
sAddTileFunc(tileAdd);
}
#endif
}
static void dtStatsPreRemoveTile(const dtMeshTile& tileRemove)
{
#if DT_STATS
if (sRemoveTileFunc)
{
sRemoveTileFunc(tileRemove);
}
#endif
}
//@UE END Adding support for memory tracking.
enum ESlabOverlapFlag
{
SLABOVERLAP_Cross = 1,
SLABOVERLAP_Min = 2,
SLABOVERLAP_Max = 4,
};
inline bool overlapSlabs(const dtReal* amin, const dtReal* amax,
const dtReal* bmin, const dtReal* bmax,
const dtReal px, const dtReal py, unsigned char* mode)
{
// Check for horizontal overlap.
// The segment is shrunken a little so that slabs which touch
// at end points are not connected.
//@UE BEGIN Changed to relative comparison to avoid losing floating point precision.
const dtReal minx = dtMax(amin[0], bmin[0]);
const dtReal maxx = dtMin(amax[0], bmax[0]);
const dtReal diff = maxx - minx;
if (diff < px)
{
*mode = 0; // No overlap
return false;
}
//@UE END
// Check vertical overlap.
const dtReal ad = (amax[1]-amin[1]) / (amax[0]-amin[0]);
const dtReal ak = amin[1] - ad*amin[0];
const dtReal bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]);
const dtReal bk = bmin[1] - bd*bmin[0];
const dtReal aminy = ad*minx + ak;
const dtReal amaxy = ad*maxx + ak;
const dtReal bminy = bd*minx + bk;
const dtReal bmaxy = bd*maxx + bk;
const dtReal dmin = bminy - aminy;
const dtReal dmax = bmaxy - amaxy;
// Crossing segments always overlap.
if (dmin*dmax < 0)
{
*mode = SLABOVERLAP_Cross;
return true;
}
// Check for overlap at endpoints.
const dtReal thr = dtSqr(py*2);
if (dmin*dmin <= thr)
{
*mode |= SLABOVERLAP_Min;
}
if (dmax*dmax <= thr)
{
*mode |= SLABOVERLAP_Max;
}
return (*mode != 0);
}
static dtReal getSlabCoord(const dtReal* va, const int side)
{
if (side == 0 || side == 4)
return va[0];
else if (side == 2 || side == 6)
return va[2];
return 0;
}
static void calcSlabEndPoints(const dtReal* va, const dtReal* vb, dtReal* bmin, dtReal* bmax, const int side)
{
if (side == 0 || side == 4)
{
if (va[2] < vb[2])
{
bmin[0] = va[2];
bmin[1] = va[1];
bmax[0] = vb[2];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[2];
bmin[1] = vb[1];
bmax[0] = va[2];
bmax[1] = va[1];
}
}
else if (side == 2 || side == 6)
{
if (va[0] < vb[0])
{
bmin[0] = va[0];
bmin[1] = va[1];
bmax[0] = vb[0];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[0];
bmin[1] = vb[1];
bmax[0] = va[0];
bmax[1] = va[1];
}
}
}
static dtReal getHeightFromDMesh(const dtMeshTile* tile, int polyIdx, dtReal* pos)
{
if (tile == 0 || polyIdx < 0 || polyIdx >= tile->header->detailMeshCount)
return 0.0f;
const dtPolyDetail* pd = &tile->detailMeshes[polyIdx];
const dtPoly* poly = &tile->polys[polyIdx];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const dtReal* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
dtReal h;
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
return h;
}
}
return 0.0f;
}
inline int computeTileHash(int x, int y, const int mask)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & mask);
}
//@UE BEGIN
enum ELinkAllocationType
{
// allocated in linksFreeList from dtMeshTile (detour)
CREATE_LINK_PREALLOCATED,
// offmesh links will be added in dynamic array (unreal specific)
CREATE_LINK_DYNAMIC_OFFMESH,
#if WITH_NAVMESH_CLUSTER_LINKS
CREATE_LINK_DYNAMIC_CLUSTER,
#endif // WITH_NAVMESH_SEGMENT_LINKS
};
//@UE END
inline unsigned int allocLink(dtMeshTile* tile, char LinkAllocMode)
{
unsigned int newLink = DT_NULL_LINK;
if (LinkAllocMode == CREATE_LINK_PREALLOCATED)
{
if (tile->linksFreeList != DT_NULL_LINK)
{
newLink = tile->linksFreeList;
tile->linksFreeList = tile->links[newLink].next;
}
}
//@UE BEGIN: offmesh links will be added in dynamic array.
// Both Point to Point (stock detour) and Segment to Segment (unreal)
else if (LinkAllocMode == CREATE_LINK_DYNAMIC_OFFMESH)
{
if (tile->dynamicFreeListO == DT_NULL_LINK)
{
dtLink emptyLink;
memset(&emptyLink, 0, sizeof(dtLink));
emptyLink.next = DT_NULL_LINK;
tile->dynamicFreeListO = tile->dynamicLinksO.size();
tile->dynamicLinksO.push(emptyLink);
}
newLink = tile->dynamicFreeListO;
tile->dynamicFreeListO = tile->dynamicLinksO[newLink].next;
newLink += tile->header->maxLinkCount;
}
#if WITH_NAVMESH_CLUSTER_LINKS
else if (LinkAllocMode == CREATE_LINK_DYNAMIC_CLUSTER)
{
if (tile->dynamicFreeListC == DT_NULL_LINK)
{
dtClusterLink emptyLink;
memset(&emptyLink, 0, sizeof(dtClusterLink));
emptyLink.next = DT_NULL_LINK;
tile->dynamicFreeListC = tile->dynamicLinksC.size();
tile->dynamicLinksC.push(emptyLink);
}
newLink = tile->dynamicFreeListC;
tile->dynamicFreeListC = tile->dynamicLinksC[newLink].next;
newLink += DT_CLINK_FIRST;
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
//@UE END
return newLink;
}
inline void freeLink(dtMeshTile* tile, unsigned int link)
{
//@UE BEGIN: offmesh links were added in dynamic array
#if WITH_NAVMESH_CLUSTER_LINKS
const unsigned int firstClusterLinkIdx = DT_CLINK_FIRST;
#else
const unsigned int firstClusterLinkIdx = UINT_MAX;
#endif // WITH_NAVMESH_CLUSTER_LINKS
if (link < (unsigned int)tile->header->maxLinkCount)
{
tile->links[link].next = tile->linksFreeList;
tile->linksFreeList = link;
}
else if (link < firstClusterLinkIdx)
{
const unsigned int linkIdx = link - tile->header->maxLinkCount;
tile->dynamicLinksO[linkIdx].next = tile->dynamicFreeListO;
tile->dynamicFreeListO = linkIdx;
}
#if WITH_NAVMESH_CLUSTER_LINKS
else
{
const unsigned int linkIdx = link - DT_CLINK_FIRST;
tile->dynamicLinksC[linkIdx].next = tile->dynamicFreeListC;
tile->dynamicFreeListC = linkIdx;
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
//@UE END
}
dtNavMesh* dtAllocNavMesh()
{
void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM_NAVMESH);
if (!mem) return 0;
return new(mem) dtNavMesh;
}
/// @par
///
/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
/// flag set.
void dtFreeNavMesh(dtNavMesh* navmesh)
{
if (!navmesh) return;
navmesh->~dtNavMesh();
dtFree(navmesh, DT_ALLOC_PERM_NAVMESH);
}
//@UE BEGIN
void dtFreeNavMeshTileRuntimeData(dtMeshTile* tile)
{
tile->dynamicLinksO.~dtChunkArray();
#if WITH_NAVMESH_CLUSTER_LINKS
tile->dynamicLinksC.~dtChunkArray();
#endif // WITH_NAVMESH_CLUSTER_LINKS
}
#if WITH_NAVMESH_SEGMENT_LINKS
//////////////////////////////////////////////////////////////////////////////////////////
// Segment type offmesh links
static const unsigned int DT_INVALID_SEGMENT = 0xffffffff;
static const int DT_MAX_OFFMESH_SEGMENT_POINTS = 32;
struct dtOffMeshSegmentIntersection
{
dtMeshTile* tile;
unsigned int poly;
dtReal t;
};
struct dtOffMeshSegmentTileIntersection
{
dtOffMeshSegmentIntersection points[DT_MAX_OFFMESH_SEGMENT_POINTS];
int npoints;
};
struct dtOffMeshSegmentIntersectionLink
{
// Links connect intersection points on different segments so the t values for both edge
// segments are needed to retrieve the correct intersection points later.
dtReal tA, tB;
unsigned int polyA, polyB;
dtMeshTile* tileA;
dtMeshTile* tileB;
};
// This class stores pairs of intersection links.
// The pairs found will be sorted by relative t values and then converted into segment parts in order.
struct dtOffMeshSegmentIntersectionLinkPair
{
dtOffMeshSegmentIntersectionLink links[2];
};
struct dtOffMeshSegmentPart
{
// Separate t values for A and B edges.
// Parts are formed from two unique segments requiring their own t values to retrieve the correct end points from the original segments.
dtReal tA0, tA1, tB0, tB1;
unsigned short vA0, vA1, vB0, vB1;
unsigned int polyA, polyB;
dtMeshTile* tileA;
dtMeshTile* tileB;
};
struct dtOffMeshSegmentData
{
dtOffMeshSegmentTileIntersection listA;
dtOffMeshSegmentTileIntersection listB;
};
inline bool isIntersectionPointEqual(dtReal t0, dtReal t1)
{
return dtAbs(t0 - t1) < 0.001f;
}
static bool isPolyIntersectingSegment(const dtMeshTile* tile, int polyIdx,
const dtReal* spos, const dtReal* epos, dtReal& tmin, dtReal& tmax)
{
dtPoly* poly = &tile->polys[polyIdx];
dtReal verts[DT_VERTS_PER_POLYGON*3];
for (int i = 0; i < poly->vertCount; i++)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
int smin, smax;
return dtIntersectSegmentPoly2D(spos, epos, verts, poly->vertCount, tmin, tmax, smin, smax);
}
static void addSegmentIntersections(const dtOffMeshSegmentIntersection* isec, dtOffMeshSegmentIntersection* list, int& nlist)
{
UE_LOG(LogSegmentLink, Log, TEXT(" %hs"), __FUNCTION__);
int minIdx = -1;
int maxIdx = -1;
for (int i = 0; i < nlist; i++)
{
if (isIntersectionPointEqual(list[i].t, isec[0].t))
minIdx = i;
if (isIntersectionPointEqual(list[i].t, isec[1].t))
maxIdx = i;
}
// min = overwrite if exists or add new one
if (minIdx < 0)
{
UE_LOG(LogSegmentLink, Log, TEXT(" %hs minIdx=%i, add seg intersection, tile (%i,%i,%i), poly %i, %f"),
__FUNCTION__, minIdx, isec[0].tile->header->x, isec[0].tile->header->y, isec[0].tile->header->layer, isec[0].poly, isec[0].t);
list[nlist] = isec[0];
nlist++;
}
else
{
UE_LOG(LogSegmentLink, Log, TEXT(" %hs override"), __FUNCTION__);
list[minIdx] = isec[0];
}
// max = skip if exists or add new one
if (maxIdx < 0 && nlist < DT_MAX_OFFMESH_SEGMENT_POINTS)
{
UE_LOG(LogSegmentLink, Log, TEXT(" %hs maxIdx=%i, add seg intersection, tile (%i,%i,%i), poly %i, %f"),
__FUNCTION__, maxIdx, isec[1].tile->header->x, isec[1].tile->header->y, isec[1].tile->header->layer, isec[1].poly, isec[1].t);
list[nlist] = isec[1];
nlist++;
}
}
int segmentIntersectionSorter(const void* i1, const void* i2)
{
// lesser "t" goes first
const dtOffMeshSegmentIntersection* a = (const dtOffMeshSegmentIntersection*)i1;
const dtOffMeshSegmentIntersection* b = (const dtOffMeshSegmentIntersection*)i2;
return (a->t < b->t) ? -1 : (a->t > b->t) ? 1 : 0;
}
static void gatherSegmentIntersections(dtMeshTile* tile,
const dtReal* spos, const dtReal* epos,const dtReal radius, const dtReal walkableClimb,
dtOffMeshSegmentTileIntersection& list)
{
// get all polys intersecting with segment
UE_LOG(LogSegmentLink, Log, TEXT(" %hs for (%i,%i,%i) segment: start (%0.2f, %0.2f, %0.2f) end (%0.2f, %0.2f, %0.2f)"),
__FUNCTION__, tile->header->x, tile->header->y, tile->header->layer,
spos[0], spos[1], spos[2], epos[0], epos[1], epos[2]);
// compute bounds including radius
dtReal segBoundsMin[3], segBoundsMax[3], segRad[3] = { radius, walkableClimb, radius };
dtVcopy(segBoundsMin, spos);
dtVcopy(segBoundsMax, spos);
dtVmin(segBoundsMin, epos);
dtVmax(segBoundsMax, epos);
dtVsub(segBoundsMin, segBoundsMin, segRad);
dtVadd(segBoundsMax, segBoundsMax, segRad);
if (!dtOverlapBounds(segBoundsMin, segBoundsMax, tile->header->bmin, tile->header->bmax))
return;
dtOffMeshSegmentIntersection intersec[2];
intersec[0].tile = tile;
intersec[1].tile = tile;
dtReal bmin[3], bmax[3];
for (int i = 0; i < tile->header->offMeshBase; i++)
{
dtPoly* poly = &tile->polys[i];
dtVcopy(bmin, &tile->verts[poly->verts[0]*3]);
dtVcopy(bmax, &tile->verts[poly->verts[0]*3]);
for (int j = 1; j < poly->vertCount; j++)
{
dtVmin(bmin, &tile->verts[poly->verts[j]*3]);
dtVmax(bmax, &tile->verts[poly->verts[j]*3]);
}
// use simple AABB overlap test first
if (dtOverlapBounds(segBoundsMin, segBoundsMax, bmin, bmax))
{
// mark intersection
if (isPolyIntersectingSegment(tile, i, spos, epos, intersec[0].t, intersec[1].t))
{
intersec[0].poly = i;
intersec[1].poly = i;
addSegmentIntersections(intersec, list.points, list.npoints);
if (list.npoints >= DT_MAX_OFFMESH_SEGMENT_POINTS)
break;
}
}
}
}
static dtOffMeshSegmentData* initSegmentIntersection(const dtNavMesh& navMesh, dtMeshTile* tile)
{
const int segCount = tile->header->offMeshSegConCount;
if (segCount <= 0)
return nullptr;
dtOffMeshSegmentData* segs = (dtOffMeshSegmentData*)dtAlloc(sizeof(dtOffMeshSegmentData)*segCount, DT_ALLOC_TEMP);
if (segs == nullptr)
return nullptr;
UE_LOG(LogSegmentLink, Log, TEXT(" %hs for tile (%i,%i,%i)"), __FUNCTION__, tile->header->x, tile->header->y, tile->header->layer);
memset(segs, 0, sizeof(dtOffMeshSegmentData)*segCount);
for (int i = 0; i < segCount; i++)
{
dtOffMeshSegmentConnection& con = tile->offMeshSeg[i];
CA_SUPPRESS(6385);
gatherSegmentIntersections(tile, con.startA, con.endA, con.rad, navMesh.getWalkableClimb(), segs[i].listA);
gatherSegmentIntersections(tile, con.startB, con.endB, con.rad, navMesh.getWalkableClimb(), segs[i].listB);
}
return segs;
}
static void appendSegmentIntersection(const dtNavMesh& navMesh, dtOffMeshSegmentData* seg, const dtMeshTile* tile, dtMeshTile* nei)
{
if (seg == nullptr)
return;
for (int i = 0; i < tile->header->offMeshSegConCount; i++)
{
dtOffMeshSegmentConnection& con = tile->offMeshSeg[i];
gatherSegmentIntersections(nei, con.startA, con.endA, con.rad, navMesh.getWalkableClimb(), seg[i].listA);
gatherSegmentIntersections(nei, con.startB, con.endB, con.rad, navMesh.getWalkableClimb(), seg[i].listB);
}
}
int segmentIntersectionLinkPairSorter(const void* i1, const void* i2)
{
// lesser combined "t" goes first
const dtOffMeshSegmentIntersectionLinkPair* first = (const dtOffMeshSegmentIntersectionLinkPair*)i1;
const dtOffMeshSegmentIntersectionLinkPair* second = (const dtOffMeshSegmentIntersectionLinkPair*)i2;
const int tFirst = (first->links[1].tA - first->links[0].tA) + (first->links[1].tB - first->links[0].tB);
const int tSecond = (second->links[1].tA - second->links[0].tA) + (second->links[1].tB - second->links[0].tB);
return (tFirst < tSecond) ? -1 : (tFirst > tSecond) ? 1 : 0;
}
int segmentPartSorter(const void* i1, const void* i2)
{
// higher combined relative edge length ((tA1-tA0) + (tB1-tB0)) goes first
const dtOffMeshSegmentPart* a = (const dtOffMeshSegmentPart*)i1;
const dtOffMeshSegmentPart* b = (const dtOffMeshSegmentPart*)i2;
const dtReal lenA = (a->tA1 - a->tA0) + (a->tB1 - a->tB0);
const dtReal lenB = (b->tA1 - b->tA0) + (b->tB1 - b->tB0);
return (lenA > lenB) ? -1 : (lenA < lenB) ? 1 : 0;
}
// Advance the index into the specified list skipping over sections of the segment that do not intersect any polygons.
//
// In this image, intersection points are defined with an X. The first two intersection points are owned by PolyA. The fact
// that both points are owned by the same poly signals that there is no polygon that shares the edge where the intersection occurs.
// If PolyA and PolyB shared the edge where the second intersection occurred, then PolyB would be the owner of the second
// intersection point and we would know that there is no gap.
//
// PolyA Gap PolyB
// ############## ##############
// # # # #
// # # # #
// # # ----Skip----> # #
// ----X------------X---------------X------------X---->
// # # # #
// # # # #
// ############## ##############
//
static void advanceListIndex(int& listIndex, const dtOffMeshSegmentTileIntersection& list)
{
unsigned int lastPoly = list.points[listIndex].poly;
const dtMeshTile* lastTile = list.points[listIndex].tile;
if (++listIndex < list.npoints)
{
unsigned int nextPoly = list.points[listIndex].poly;
const dtMeshTile* nextTile = list.points[listIndex].tile;
// The next intersection point will be owned by a different poly if the segment continues directly into another polygon on the navmesh.
// Otherwise, there is a gap and we should not link any part of a segment that intersects a gap.
if (lastPoly == nextPoly && lastTile == nextTile)
{
// This there is a gap between the previous poly intersected and the next poly intersected by this segment.
// Advance one more index to get to the next poly that is intersected.
++listIndex;
}
}
}
// This function matches points in listA with points in listB that can form a pair of links that can later be converted into segment parts.
// Points in the longer list will be shared with other pairs at most once, but points in the shorter list might be shared as many times
// as it takes to create a link to every point in the shorter list.
// The number of link pairs found is returned.
static int findSegmentIntersectionLinkPairs(const dtOffMeshSegmentTileIntersection& listA, const dtOffMeshSegmentTileIntersection& listB, dtOffMeshSegmentIntersectionLinkPair* outLinkPairs)
{
// Each points array needs at least two points to create at least one pair of segment links.
if (listA.npoints < 2 || listB.npoints < 2)
{
return 0;
}
int nPairs = 0;
int indexA = 0;
int indexB = 0;
// Determine aliases to A and B specific data based on the length of the lists involved.
bool bListAisLonger = listA.npoints > listB.npoints;
const dtOffMeshSegmentTileIntersection& longerList = bListAisLonger ? listA : listB;
const dtOffMeshSegmentTileIntersection& shorterList = bListAisLonger ? listB : listA;
int& longerListIndex = bListAisLonger ? indexA : indexB;
int& shorterListIndex = bListAisLonger ? indexB : indexA;
// Lambda function for convenience to create link pairs.
auto createSegmentIntersectionLinkPair = [&outLinkPairs, &nPairs, &listA, &listB, &indexA, &indexB]()
{
dtOffMeshSegmentIntersectionLink& firstLink = outLinkPairs[nPairs].links[0];
firstLink.tA = listA.points[indexA].t;
firstLink.polyA = listA.points[indexA].poly;
firstLink.tileA = listA.points[indexA].tile;
firstLink.tB = listB.points[indexB].t;
firstLink.polyB = listB.points[indexB].poly;
firstLink.tileB = listB.points[indexB].tile;
dtOffMeshSegmentIntersectionLink& secondLink = outLinkPairs[nPairs].links[1];
secondLink.tA = listA.points[indexA + 1].t;
secondLink.polyA = listA.points[indexA + 1].poly;
secondLink.tileA = listA.points[indexA + 1].tile;
secondLink.tB = listB.points[indexB + 1].t;
secondLink.polyB = listB.points[indexB + 1].poly;
secondLink.tileB = listB.points[indexB + 1].tile;
nPairs++;
};
// Create the first pair of links which is guaranteed to connect the first two points in listA with the first two points in listB.
createSegmentIntersectionLinkPair();
// Advance to the next point in the longer list looking for the next pair of links.
advanceListIndex(longerListIndex, longerList);
// Iterate over the longer list since it is known that the pair of points used in the longer list will increment after each segment link pair is created.
while (longerListIndex < longerList.npoints - 1)
{
// Calculate the number of points remaining in each list that have not been considered for pairing yet.
const int numRemainingLongListPoints = longerList.npoints - longerListIndex - 2;
const int numRemainingShortListPoints = shorterList.npoints - shorterListIndex - 2;
// Determine if the index to the pair of points used in the shorter list should increment based on
// which points in the shorter list have closer t values to the current points in the longer list.
if (numRemainingShortListPoints > 0)
{
// Ensure every point in the shorter list also gets a connection to a point in the longer list regardless of t values.
if (numRemainingShortListPoints > numRemainingLongListPoints)
{
advanceListIndex(shorterListIndex, shorterList);
}
else
{
int currentTDiff = dtAbs(longerList.points[longerListIndex].t - shorterList.points[shorterListIndex].t) +
dtAbs(longerList.points[longerListIndex + 1].t - shorterList.points[shorterListIndex + 1].t);
int nextTDiff = dtAbs(longerList.points[longerListIndex].t - shorterList.points[shorterListIndex + 1].t) +
dtAbs(longerList.points[longerListIndex + 1].t - shorterList.points[shorterListIndex + 2].t);
if (nextTDiff < currentTDiff)
{
// The next pair of points in the shorter list are more appropriate to link to the current points in the longer list.
advanceListIndex(shorterListIndex, shorterList);
}
}
}
// Create the next pair of segment intersection links based on the currently selected points in both lists.
createSegmentIntersectionLinkPair();
// Advance to the next point in the longer list looking for the next pair of links.
advanceListIndex(longerListIndex, longerList);
}
return nPairs;
}
static unsigned short findOrAddUniqueValue(dtReal value, dtReal* array, unsigned short& narray)
{
for (unsigned short i = 0; i < narray; i++)
{
if (array[i] == value)
return i;
}
const unsigned short pos = narray;
array[pos] = value;
narray++;
return pos;
}
static void createSegmentParts(const dtMeshTile* tile, const dtOffMeshSegmentData& segData,
dtOffMeshSegmentPart* parts, const int maxParts, int& nparts, unsigned short& nverts)
{
if (segData.listA.npoints <= 0 && segData.listB.npoints <= 0)
return;
UE_LOG(LogSegmentLink, Log, TEXT(" %hs (%i,%i,%i)"), __FUNCTION__, tile->header->x, tile->header->y, tile->header->layer);
// Create dtOffMeshSegmentIntersectionLinkPair list.
const int maxLinkPairs = DT_MAX_OFFMESH_SEGMENT_POINTS - 1;
dtOffMeshSegmentIntersectionLinkPair linkPairs[maxLinkPairs];
memset(linkPairs, 0, sizeof(dtOffMeshSegmentIntersectionLinkPair) * maxLinkPairs);
int nlinkPairs = findSegmentIntersectionLinkPairs(segData.listA, segData.listB, linkPairs);
// There needs to be at least one pair of links to create a segment part.
if (nlinkPairs < 1)
{
return;
}
UE_LOG(LogSegmentLink, Log, TEXT(" %hs %i nlinkPairs"), __FUNCTION__, nlinkPairs);
qsort(linkPairs, nlinkPairs, sizeof(dtOffMeshSegmentIntersectionLinkPair), segmentIntersectionLinkPairSorter);
// create segments
memset(parts, 0, sizeof(dtOffMeshSegmentPart)*maxParts);
nparts = 0;
// Create segment parts for link pairs that belong to the current tile.
for (int i = 0; i < nlinkPairs; i++)
{
const dtOffMeshSegmentIntersectionLinkPair& linkPair = linkPairs[i];
if (linkPair.links[0].tileA == tile || linkPair.links[0].tileB == tile ||
linkPair.links[1].tileA == tile || linkPair.links[1].tileB == tile)
{
dtOffMeshSegmentPart& part = parts[nparts];
part.tA0 = linkPair.links[0].tA;
part.tA1 = linkPair.links[1].tA;
part.tB0 = linkPair.links[0].tB;
part.tB1 = linkPair.links[1].tB;
part.polyA = linkPair.links[0].polyA;
part.polyB = linkPair.links[0].polyB;
part.tileA = linkPair.links[0].tileA;
part.tileB = linkPair.links[0].tileB;
nparts++;
UE_LOG(LogSegmentLink, Log, TEXT(" %hs seg part %i created tA: %f, %f, tb: %f, %f, tileA (%i,%i,%i), tileB (%i,%i,%i), tile=%p, tileA=%p, tileB=%p"),
__FUNCTION__, nparts,
part.tA0, part.tA1,
part.tB0, part.tB1,
part.tileA->header->x, part.tileA->header->y, part.tileA->header->layer,
part.tileB->header->x, part.tileB->header->y, part.tileB->header->layer,
tile, part.tileA, part.tileB);
}
}
// sort positions
if (nparts > DT_MAX_OFFMESH_SEGMENT_PARTS)
{
qsort(parts, nparts, sizeof(dtOffMeshSegmentPart), segmentPartSorter);
nparts = DT_MAX_OFFMESH_SEGMENT_PARTS;
}
// count unique verts
dtReal uniquePos[DT_MAX_OFFMESH_SEGMENT_PARTS*2];
unsigned short nPos = 0;
for (int i = 0; i < nparts; i++)
{
// Use specific t values for the A segment part.
parts[i].vA0 = findOrAddUniqueValue(parts[i].tA0, uniquePos, nPos);
parts[i].vA1 = findOrAddUniqueValue(parts[i].tA1, uniquePos, nPos);
}
dtReal uniquePosB[DT_MAX_OFFMESH_SEGMENT_PARTS*2];
unsigned short nPosB = 0;
for (int i = 0; i < nparts; i++)
{
// Use specific t values for the B segment part.
// B values can also be unique.
parts[i].vB0 = findOrAddUniqueValue(parts[i].tB0, uniquePosB, nPosB) + nPos;
parts[i].vB1 = findOrAddUniqueValue(parts[i].tB1, uniquePosB, nPosB) + nPos;
}
nverts = (nPos + nPosB) * 2;
UE_LOG(LogSegmentLink, Log, TEXT(" %hs %i nparts created"), __FUNCTION__, nparts);
}
static void createSegmentPolys(dtNavMesh* nav, dtMeshTile* tile, dtOffMeshSegmentConnection* con,
dtOffMeshSegmentPart* parts, int nparts, unsigned short vertBase, int polyBase)
{
dtReal lenA[3], lenB[3];
dtVsub(lenA, con->endA, con->startA);
dtVsub(lenB, con->endB, con->startB);
unsigned char sideFwd = DT_LINK_FLAG_OFFMESH_CON | (con->getBiDirectional() ? DT_LINK_FLAG_OFFMESH_CON_BIDIR : 0);
unsigned char sideBck = sideFwd | DT_LINK_FLAG_OFFMESH_CON_BACKTRACKER;
con->firstPoly = (unsigned short)(polyBase - tile->header->offMeshSegPolyBase);
con->npolys = (nparts > 0 && nparts < 256) ? (unsigned char)nparts : 0;
for (int i = 0; i < nparts; i++)
{
dtOffMeshSegmentPart* it = &parts[i];
// add verts
dtVmad(&tile->verts[(vertBase+it->vA0)*3], con->startA, lenA, it->tA0);
dtVmad(&tile->verts[(vertBase+it->vA1)*3], con->startA, lenA, it->tA1);
dtVmad(&tile->verts[(vertBase+it->vB0)*3], con->startB, lenB, it->tB0);
dtVmad(&tile->verts[(vertBase+it->vB1)*3], con->startB, lenB, it->tB1);
// add poly
dtPoly* poly = &tile->polys[polyBase + i];
poly->vertCount = 4;
poly->verts[0] = vertBase + it->vA0;
poly->verts[1] = vertBase + it->vA1;
poly->verts[2] = vertBase + it->vB0;
poly->verts[3] = vertBase + it->vB1;
poly->firstLink = DT_NULL_LINK;
// add links
const unsigned char sideA = (tile == it->tileA) ? DT_CONNECTION_INTERNAL : 0;
const unsigned char sideB = (tile == it->tileB) ? DT_CONNECTION_INTERNAL : 0;
nav->linkOffMeshHelper(tile, polyBase + i, it->tileA, it->polyA, sideBck | sideA, 0);
nav->linkOffMeshHelper(tile, polyBase + i, it->tileB, it->polyB, sideFwd | sideB, 1);
nav->linkOffMeshHelper(it->tileA, it->polyA, tile, polyBase + i, sideFwd | sideA, 0xff);
nav->linkOffMeshHelper(it->tileB, it->polyB, tile, polyBase + i, sideBck | sideB, 0xff);
}
}
static void createSegmentLinks(dtNavMesh* nav, dtOffMeshSegmentData* seg, dtMeshTile* tile)
{
if (seg == nullptr)
return;
UE_LOG(LogSegmentLink, Log, TEXT("%hs (%i,%i,%i)"), __FUNCTION__, tile->header->x, tile->header->y, tile->header->layer);
unsigned short vertBase = tile->header->offMeshSegVertBase;
int polyBase = tile->header->offMeshSegPolyBase;
for (int i = 0; i < tile->header->offMeshSegConCount; i++)
{
dtOffMeshSegmentConnection& con = tile->offMeshSeg[i];
dtOffMeshSegmentData& segData = seg[i];
qsort(segData.listA.points, segData.listA.npoints, sizeof(dtOffMeshSegmentIntersection), segmentIntersectionSorter);
qsort(segData.listB.points, segData.listB.npoints, sizeof(dtOffMeshSegmentIntersection), segmentIntersectionSorter);
const int maxParts = (DT_MAX_OFFMESH_SEGMENT_POINTS * 2) - 1;
dtOffMeshSegmentPart parts[maxParts];
int nparts = 0;
unsigned short nverts = 0;
createSegmentParts(tile, segData, parts, maxParts, nparts, nverts);
createSegmentPolys(nav, tile, &con, parts, nparts, vertBase, polyBase);
vertBase += nverts;
// The polys array is allocated enough memory to contain the max off-mesh segment parts when it is created.
// Therefore, polyBase must be incremented by the max off-mesh segment parts count for subsequent connections to access the correct data.
// See dtCreateNavMeshData for polys array creation and initialization.
polyBase += DT_MAX_OFFMESH_SEGMENT_PARTS;
}
}
#endif // WITH_NAVMESH_SEGMENT_LINKS
//@UE END
//////////////////////////////////////////////////////////////////////////////////////////
/**
@class dtNavMesh
The navigation mesh consists of one or more tiles defining three primary types of structural data:
A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.)
A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.)
Off-mesh connections, which define custom point-to-point edges within the navigation graph.
The general build process is as follows:
-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline.
-# Optionally, create off-mesh connection data.
-# Combine the source data into a dtNavMeshCreateParams structure.
-# Create a tile data array using dtCreateNavMeshData().
-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes,
the tile data is loaded during this step.)
-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile().
Notes:
- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding.
- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized
to have only a single tile.
- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will
always contain either a success or failure flag.
@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh
*/
dtNavMesh::dtNavMesh() :
m_tileWidth(0),
m_tileHeight(0),
m_maxTiles(0),
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFree(0),
m_tiles(0),
m_saltBits(0),
m_tileBits(0),
m_polyBits(0)
{
memset(&m_params, 0, sizeof(dtNavMeshParams));
memset(m_areaCostOrder, 0, sizeof(m_areaCostOrder));
m_orig[0] = 0;
m_orig[1] = 0;
m_orig[2] = 0;
}
dtNavMesh::~dtNavMesh()
{
for (int i = 0; i < m_maxTiles; ++i)
{
if (m_tiles[i].flags & DT_TILE_FREE_DATA)
{
dtMeshTile& meshTile = m_tiles[i];
dtStatsPreRemoveTile(meshTile);
dtFree(meshTile.data, DT_ALLOC_PERM_TILE_DATA);
meshTile.data = 0;
meshTile.dataSize = 0;
}
// cleanup runtime data (not serialized by navmesh owners)
dtFreeNavMeshTileRuntimeData(&m_tiles[i]);
}
dtFree(m_posLookup, DT_ALLOC_PERM_LOOKUP);
dtFree(m_tiles, DT_ALLOC_PERM_TILES);
}
dtStatus dtNavMesh::init(const dtNavMeshParams* params)
{
memcpy(&m_params, params, sizeof(dtNavMeshParams));
dtVcopy(m_orig, params->orig);
// @UE BEGIN
#if DO_CHECK
for (uint8 i = 0; i < DT_RESOLUTION_COUNT; i++)
{
check(m_params.resolutionParams[i].bvQuantFactor != 0);
}
#endif // DO_CHECK
// @UE END
m_tileWidth = params->tileWidth;
m_tileHeight = params->tileHeight;
// Init tiles
m_maxTiles = params->maxTiles;
m_tileLutSize = dtNextPow2(params->maxTiles/4);
if (!m_tileLutSize) m_tileLutSize = 1;
m_tileLutMask = m_tileLutSize-1;
m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM_TILES);
if (!m_tiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM_LOOKUP);
if (!m_posLookup)
return DT_FAILURE | DT_OUT_OF_MEMORY;
memset((void*)m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
m_nextFree = 0;
for (int i = m_maxTiles-1; i >= 0; --i)
{
m_tiles[i].salt = DT_SALT_BASE;
m_tiles[i].next = m_nextFree;
m_nextFree = &m_tiles[i];
}
// Init ID generator values.
m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
#if USE_64BIT_ADDRESS
m_saltBits = dtMin((unsigned int)31, 64 - m_tileBits - m_polyBits);
#else
m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);
#endif
if (m_saltBits < DT_MIN_SALT_BITS)
return DT_FAILURE | DT_INVALID_PARAM;
return DT_SUCCESS;
}
dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
dtNavMeshParams params;
dtVcopy(params.orig, header->bmin);
params.tileWidth = header->bmax[0] - header->bmin[0];
params.tileHeight = header->bmax[2] - header->bmin[2];
params.maxTiles = 1;
params.maxPolys = header->polyCount;
dtStatus status = init(&params);
if (dtStatusFailed(status))
return status;
return addTile(data, dataSize, flags, 0, 0);
}
/// @par
///
/// @note The parameters are created automatically when the single tile
/// initialization is performed.
const dtNavMeshParams* dtNavMesh::getParams() const
{
return &m_params;
}
//////////////////////////////////////////////////////////////////////////////////////////
int dtNavMesh::findConnectingPolys(const dtReal* va, const dtReal* vb,
const dtMeshTile* fromTile, int fromPolyIdx,
const dtMeshTile* tile, int side,
dtChunkArray<FConnectingPolyData>& cons) const
{
if (!tile) return 0;
dtReal amin[2], amax[2], apt[3];
amin[0] = 0;
amin[1] = 0;
amax[0] = 0;
amax[1] = 0;
calcSlabEndPoints(va, vb, amin, amax, side);
const dtReal apos = getSlabCoord(va, side);
dtVcopy(apt, va);
// Remove links pointing to 'side' and compact the links array.
dtReal bmin[2], bmax[2], bpt[3];
bmin[0] = 0;
bmin[1] = 0;
bmax[0] = 0;
bmax[1] = 0;
unsigned short m = DT_EXT_LINK | (unsigned short)side;
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->neis[j] != m) continue;
const dtReal* vc = &tile->verts[poly->verts[j] * 3];
const dtReal bpos = getSlabCoord(vc, side);
// Segments are not close enough.
if (dtAbs(apos - bpos) > 0.01f)
continue;
const dtReal* vd = &tile->verts[poly->verts[(j + 1) % nv] * 3];
// Check if the segments touch.
calcSlabEndPoints(vc, vd, bmin, bmax, side);
unsigned char overlapMode = 0;
if (!overlapSlabs(amin, amax, bmin, bmax, 0.01f, getWalkableClimb(), &overlapMode)) continue;
// if overlapping with only one side, verify height difference using detailed mesh
if (overlapMode == SLABOVERLAP_Max || overlapMode == SLABOVERLAP_Min)
{
dtVcopy(bpt, vc);
const int coordIdx = (side == 0 || side == 4) ? 2 : 0;
apt[coordIdx] = (overlapMode == SLABOVERLAP_Min) ? dtMax(amin[0], bmin[0]) : dtMin(amax[0], bmax[0]);
bpt[coordIdx] = apt[coordIdx];
const dtReal aH = getHeightFromDMesh(fromTile, fromPolyIdx, apt);
const dtReal bH = getHeightFromDMesh(tile, i, bpt);
const dtReal heightDiff = dtAbs(aH - bH);
if (heightDiff > getWalkableClimb())
continue;
}
// Add return value.
FConnectingPolyData NewPolyData;
NewPolyData.min = dtMax(amin[0], bmin[0]);
NewPolyData.max = dtMin(amax[0], bmax[0]);
NewPolyData.ref = base | (dtPolyRef)i;
cons.push(NewPolyData);
n++;
break;
}
}
return n;
}
void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, dtMeshTile* target)
{
if (!tile || !target) return;
const unsigned int targetNum = decodePolyIdTile(getTileRef(target));
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
unsigned int j = poly->firstLink;
unsigned int pj = DT_NULL_LINK;
while (j != DT_NULL_LINK)
{
dtLink& testLink = getLink(tile, j);
//@UE BEGIN
if ((testLink.side & DT_CONNECTION_INTERNAL) == 0 &&
//@UE END
decodePolyIdTile(testLink.ref) == targetNum)
{
// Remove link.
unsigned int nj = testLink.next;
if (pj == DT_NULL_LINK)
{
poly->firstLink = nj;
}
else
{
dtLink& prevLink = getLink(tile, pj);
prevLink.next = nj;
}
freeLink(tile, j);
j = nj;
}
else
{
// Advance
pj = j;
j = testLink.next;
}
}
}
//@UE BEGIN
#if WITH_NAVMESH_CLUSTER_LINKS
unconnectClusterLinks(tile, target);
#endif // WITH_NAVMESH_CLUSTER_LINKS
//@UE END
}
void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side, bool updateCLinks)
{
if (!tile) return;
dtChunkArray<FConnectingPolyData> cons(16);
// Connect border links.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
// Create new links.
// unsigned short m = DT_EXT_LINK | (unsigned short)side;
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip non-portal edges.
if ((poly->neis[j] & DT_EXT_LINK) == 0)
continue;
const int dir = (int)(poly->neis[j] & 0xff);
if (side != -1 && dir != side)
continue;
// Create new links
const dtReal* va = &tile->verts[poly->verts[j]*3];
const dtReal* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
// reset array before using
cons.resize(0);
findConnectingPolys(va,vb, tile, i, target, dtOppositeTile(dir), cons);
for (int k = 0; k < cons.size(); ++k)
{
const FConnectingPolyData& NeiData = cons[k];
unsigned int idx = allocLink(tile, CREATE_LINK_PREALLOCATED);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = NeiData.ref;
link->edge = (unsigned char)j;
link->side = (unsigned char)dir;
link->next = poly->firstLink;
poly->firstLink = idx;
// Compress portal limits to a byte value.
if (dir == 0 || dir == 4)
{
dtReal tmin = (NeiData.min-va[2]) / (vb[2]-va[2]);
dtReal tmax = (NeiData.max-va[2]) / (vb[2]-va[2]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
else if (dir == 2 || dir == 6)
{
dtReal tmin = (NeiData.min-va[0]) / (vb[0]-va[0]);
dtReal tmax = (NeiData.max-va[0]) / (vb[0]-va[0]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
}
//@UE BEGIN
#if WITH_NAVMESH_CLUSTER_LINKS
if (updateCLinks)
{
unsigned int targetIdx = decodePolyIdPoly(NeiData.ref);
if (tile->polyClusters && target->polyClusters &&
i < tile->header->offMeshBase &&
targetIdx < (unsigned int)target->header->offMeshBase)
{
connectClusterLink(tile, tile->polyClusters[i], target, target->polyClusters[targetIdx], DT_CLINK_VALID_FWD);
connectClusterLink(target, target->polyClusters[targetIdx], tile, tile->polyClusters[i], DT_CLINK_VALID_BCK);
}
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
//@UE END
}
}
}
}
//@UE BEGIN
void dtNavMesh::linkOffMeshHelper(dtMeshTile* tile0, unsigned int polyIdx0, const dtMeshTile* tile1, unsigned int polyIdx1, unsigned char side, unsigned char edge)
{
dtPoly* poly0 = &tile0->polys[polyIdx0];
const unsigned int idx = allocLink(tile0, CREATE_LINK_DYNAMIC_OFFMESH);
dtLink& link = getLink(tile0, idx);
link.ref = getPolyRefBase(tile1) | (dtPolyRef)polyIdx1;
link.edge = edge;
link.side = side;
link.bmin = link.bmax = 0;
link.next = poly0->firstLink;
poly0->firstLink = idx;
}
//@UE END
void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side, bool updateCLinks)
{
if (!tile) return;
// Connect off-mesh links.
// We are interested on links which land from target tile to this tile.
//@UE BEGIN
const unsigned char oppositeSide = (side == -1) ? DT_CONNECTION_INTERNAL : (unsigned char)dtOppositeTile(side);
for (int i = 0; i < target->header->offMeshConCount; ++i)
{
dtOffMeshConnection* targetCon = &target->offMeshCons[i];
if (targetCon->side != oppositeSide)
continue;
const unsigned char biDirFlag = targetCon->getBiDirectional() ? DT_LINK_FLAG_OFFMESH_CON_BIDIR : 0;
dtPoly* targetPoly = &target->polys[targetCon->poly];
// Skip off-mesh connections which start location could not be connected at all.
if (targetPoly->firstLink == DT_NULL_LINK)
continue;
const dtLink& targetLink = getLink(target, targetPoly->firstLink);
const dtPolyRef targetLandPoly = targetLink.ref;
const dtReal ext[3] = { targetCon->rad, targetCon->height, targetCon->rad };
// Find polygon to connect to.
const dtReal* p = &targetCon->pos[3];
dtReal nearestPt[3];
dtPolyRef ref = 0;
// [UE] try finding cheapest, but it that's outside requested radius, fallback to nearest one
// findNearestPoly may return too optimistic results, further check to make sure.
if (targetCon->getSnapToCheapestArea())
{
ref = findCheapestNearPolyInTile(tile, p, ext, nearestPt);
if (!ref || (ref == targetLandPoly) || (dtSqr(nearestPt[0] - p[0]) + dtSqr(nearestPt[2] - p[2]) > dtSqr(targetCon->rad)))
{
ref = 0;
}
}
if (!ref)
{
ref = findNearestPolyInTile(tile, p, ext, nearestPt, true);
if (!ref || (ref == targetLandPoly) || (dtSqr(nearestPt[0] - p[0]) + dtSqr(nearestPt[2] - p[2]) > dtSqr(targetCon->rad)))
{
ref = 0;
}
}
// Avoid linking back into the same ground poly
if (!ref || (targetLandPoly == ref))
continue;
// Make sure the location is on current mesh.
dtReal* v = &target->verts[targetPoly->verts[1]*3];
dtVcopy(v, nearestPt);
unsigned char linkSide = oppositeSide | DT_LINK_FLAG_OFFMESH_CON | biDirFlag;
if (tile != target)
{
linkSide &= ~DT_CONNECTION_INTERNAL;
}
// Link off-mesh connection to target poly.
const unsigned int landPolyIdx = decodePolyIdPoly(ref);
linkOffMeshHelper(target, targetCon->poly, tile, landPolyIdx, linkSide, 1);
// Link target poly to off-mesh connection.
linkSide = (unsigned char)(side == -1 ? DT_CONNECTION_INTERNAL : side) | DT_LINK_FLAG_OFFMESH_CON | biDirFlag;
if (tile != target)
{
linkSide &= ~DT_CONNECTION_INTERNAL;
}
if (biDirFlag == 0)
{
// if it's not a bi-directional link put it in anyway
// just annotate it accordingly
linkSide |= DT_LINK_FLAG_OFFMESH_CON_BACKTRACKER;
}
linkOffMeshHelper(tile, landPolyIdx, target, targetCon->poly, linkSide, 0xff);
#if WITH_NAVMESH_CLUSTER_LINKS
if (updateCLinks)
{
unsigned int targetPolyIdx = decodePolyIdPoly(targetLandPoly);
unsigned int thisPolyIdx = landPolyIdx;
if (thisPolyIdx < (unsigned int)tile->header->offMeshBase &&
targetPolyIdx < (unsigned int)target->header->offMeshBase &&
tile->polyClusters && target->polyClusters)
{
unsigned int targetClusterIdx = target->polyClusters[targetPolyIdx];
unsigned int thisClusterIdx = tile->polyClusters[thisPolyIdx];
const bool bUniqueCheck = true;
const unsigned char flagsFwd = DT_CLINK_VALID_FWD | (biDirFlag ? DT_CLINK_VALID_BCK : 0);
const unsigned char flagsBck = DT_CLINK_VALID_BCK | (biDirFlag ? DT_CLINK_VALID_FWD : 0);
connectClusterLink(target, targetClusterIdx, tile, thisClusterIdx, flagsFwd, bUniqueCheck);
connectClusterLink(tile, thisClusterIdx, target, targetClusterIdx, flagsBck, bUniqueCheck);
}
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
}
//@UE END
}
void dtNavMesh::connectIntLinks(dtMeshTile* tile)
{
if (!tile) return;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
poly->firstLink = DT_NULL_LINK;
if (poly->getType() != DT_POLYTYPE_GROUND)
continue;
// Build edge links backwards so that the links will be
// in the linked list from lowest index to highest.
for (int j = poly->vertCount-1; j >= 0; --j)
{
// Skip hard and non-internal edges.
if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
unsigned int idx = allocLink(tile, CREATE_LINK_PREALLOCATED);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = base | (dtPolyRef)(poly->neis[j]-1);
link->edge = (unsigned char)j;
//@UE BEGIN
link->side = DT_CONNECTION_INTERNAL;
//@UE END
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = poly->firstLink;
poly->firstLink = idx;
}
}
}
}
void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
{
if (!tile) return;
// Base off-mesh connection start points.
for (int i = 0; i < tile->header->offMeshConCount; ++i)
{
dtOffMeshConnection* con = &tile->offMeshCons[i];
dtPoly* poly = &tile->polys[con->poly];
const dtReal ext[3] = { con->rad, con->height, con->rad };
// Find polygon to connect to.
const dtReal* p = &con->pos[0]; // First vertex
dtReal nearestPt[3];
dtPolyRef ref = 0;
// [UE] try finding cheapest, but it that's outside requested radius, fallback to nearest one
// findNearestPoly may return too optimistic results, further check to make sure.
if (con->getSnapToCheapestArea())
{
ref = findCheapestNearPolyInTile(tile, p, ext, nearestPt);
if (!ref || (dtSqr(nearestPt[0] - p[0]) + dtSqr(nearestPt[2] - p[2]) > dtSqr(con->rad)))
{
ref = 0;
}
}
if (!ref)
{
ref = findNearestPolyInTile(tile, p, ext, nearestPt, true);
if (!ref || (dtSqr(nearestPt[0] - p[0]) + dtSqr(nearestPt[2] - p[2]) > dtSqr(con->rad)))
{
ref = 0;
}
}
if (!ref) continue;
// Make sure the location is on current mesh.
dtReal* v = &tile->verts[poly->verts[0]*3];
dtVcopy(v, nearestPt);
unsigned char sideFwd = DT_CONNECTION_INTERNAL | DT_LINK_FLAG_OFFMESH_CON | (con->getBiDirectional() ? DT_LINK_FLAG_OFFMESH_CON_BIDIR : 0);
unsigned char sideBck = sideFwd | DT_LINK_FLAG_OFFMESH_CON_BACKTRACKER;
// Link off-mesh connection to target poly.
linkOffMeshHelper(tile, con->poly, tile, decodePolyIdPoly(ref), sideBck, 0);
// Start end-point is always connect back to off-mesh connection.
linkOffMeshHelper(tile, decodePolyIdPoly(ref), tile, con->poly, sideFwd, 0xff);
}
}
//@UE BEGIN
#if WITH_NAVMESH_CLUSTER_LINKS
void dtNavMesh::connectClusterLink(dtMeshTile* tile0, unsigned int clusterIdx0, dtMeshTile* tile1, unsigned int clusterIdx1, unsigned char flags, bool bCheckExisting)
{
if (tile0 == tile1 && clusterIdx0 == clusterIdx1)
return;
dtCluster& cluster0 = tile0->clusters[clusterIdx0];
dtClusterRef cluster1Ref = getClusterRefBase(tile1) | (dtClusterRef)clusterIdx1;
dtClusterLink* link = 0;
// check if already connected
if (bCheckExisting)
{
unsigned int i = cluster0.firstLink;
while (i != DT_NULL_LINK)
{
dtClusterLink& testLink = getClusterLink(tile0, i);
if (testLink.ref == cluster1Ref)
{
link = &testLink;
break;
}
i = testLink.next;
}
}
if (!link)
{
// add new link
unsigned int linkIdx = allocLink(tile0, CREATE_LINK_DYNAMIC_CLUSTER);
dtClusterLink& testLink = getClusterLink(tile0, linkIdx);
testLink.ref = cluster1Ref;
testLink.next = cluster0.firstLink;
cluster0.firstLink = linkIdx;
link = &testLink;
}
// assign cost and side properties
link->flags = link->flags | flags;
}
void dtNavMesh::unconnectClusterLinks(dtMeshTile* tile0, dtMeshTile* tile1)
{
unsigned int tile1Num = decodeClusterIdTile(getTileRef(tile1));
unsigned int nclusters = (unsigned int)tile0->header->clusterCount;
for (unsigned int i = 0; i < nclusters; i++)
{
dtCluster& cluster = tile0->clusters[i];
unsigned int pj = DT_NULL_LINK;
unsigned int j = cluster.firstLink;
while (j != DT_NULL_LINK)
{
dtClusterLink& link = getClusterLink(tile0, j);
unsigned int linkTileNum = decodeClusterIdTile(link.ref);
if (linkTileNum == tile1Num)
{
unsigned int nj = link.next;
if (pj == DT_NULL_LINK)
{
cluster.firstLink = nj;
}
else
{
dtClusterLink& prevLink = getClusterLink(tile0, pj);
prevLink.next = nj;
}
freeLink(tile0, j);
j = nj;
}
else
{
pj = j;
j = link.next;
}
}
}
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
//@UE END
void dtNavMesh::closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip,
const dtReal* pos, dtReal* closest) const
{
const dtPoly* poly = &tile->polys[ip];
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_POINT)
{
const dtReal* v0 = &tile->verts[poly->verts[0]*3];
const dtReal* v1 = &tile->verts[poly->verts[1]*3];
const dtReal d0 = dtVdist(pos, v0);
const dtReal d1 = dtVdist(pos, v1);
const dtReal u = d0 / (d0+d1);
dtVlerp(closest, v0, v1, u);
return;
}
// Clamp point to be inside the polygon.
dtReal verts[DT_VERTS_PER_POLYGON*3];
dtReal edged[DT_VERTS_PER_POLYGON];
dtReal edget[DT_VERTS_PER_POLYGON];
const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
dtVcopy(closest, pos);
if (nv == 0)
{
return;
}
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
{
// Point is outside the polygon, dtClamp to nearest edge.
dtReal dmin = edged[0];
int imin = 0;
for (int i = 1; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
CA_ASSUME(imin < nv);
const dtReal* va = &verts[imin*3];
const dtReal* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
}
// Find height at the location.
if (poly->getType() == DT_POLYTYPE_GROUND)
{
const dtPolyDetail* pd = &tile->detailMeshes[ip];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const dtReal* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
{
CA_SUPPRESS(6385);
v[k] = &tile->verts[poly->verts[t[k]]*3];
}
else
{
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
}
dtReal h;
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h))
{
closest[1] = h;
break;
}
}
}
else
{
dtReal h;
if (dtClosestHeightPointTriangle(closest, &verts[0], &verts[6], &verts[3], h))
{
closest[1] = h;
}
else if (dtClosestHeightPointTriangle(closest, &verts[3], &verts[6], &verts[9], h))
{
closest[1] = h;
}
}
}
dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
const dtReal* center, const dtReal* extents,
dtReal* nearestPt, bool bExcludeUnwalkable) const
{
dtAssert(nearestPt);
dtReal bmin[3], bmax[3];
dtVsub(bmin, center, extents);
dtVadd(bmax, center, extents);
// Get nearby polygons from proximity grid.
dtPolyRef polys[128];
int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128, bExcludeUnwalkable);
// Find nearest polygon amongst the nearby polygons.
dtPolyRef nearest = 0;
dtReal nearestDistanceSqr = DT_REAL_MAX;
dtVcopy(nearestPt, center);
for (int i = 0; i < polyCount; ++i)
{
dtPolyRef ref = polys[i];
dtReal closestPtPoly[3];
closestPointOnPolyInTile(tile, decodePolyIdPoly(ref), center, closestPtPoly);
dtReal d = dtVdistSqr(center, closestPtPoly);
if (d < nearestDistanceSqr)
{
dtVcopy(nearestPt, closestPtPoly);
nearestDistanceSqr = d;
nearest = ref;
}
}
// Verify if the point is actually within requested height, caller is performing 2D check anyway (radius)
if (dtAbs(nearestPt[1]-center[1]) > extents[1])
{
nearest = 0;
}
return nearest;
}
dtPolyRef dtNavMesh::findCheapestNearPolyInTile(const dtMeshTile* tile, const dtReal* center,
const dtReal* extents, dtReal* nearestPt) const
{
dtAssert(nearestPt);
dtReal bmin[3], bmax[3];
dtVsub(bmin, center, extents);
dtVadd(bmax, center, extents);
// Get nearby polygons from proximity grid.
dtPolyRef polys[128];
constexpr bool bExcludeUnwalkable = true;
int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128, bExcludeUnwalkable);
// Find nearest polygon amongst the nearby polygons.
dtPolyRef nearest = 0;
dtReal nearestDistanceSqr = DT_REAL_MAX;
unsigned char cheapestAreaCostOrder = 0xff;
for (int i = 0; i < polyCount; ++i)
{
const dtPolyRef ref = polys[i];
const int polyIdx = decodePolyIdPoly(ref);
dtPoly* poly = &tile->polys[polyIdx];
const unsigned char polyAreaCostOrder = m_areaCostOrder[poly->getArea()];
if (polyAreaCostOrder < cheapestAreaCostOrder)
{
cheapestAreaCostOrder = polyAreaCostOrder;
nearestDistanceSqr = DT_REAL_MAX;
nearest = 0;
}
if (polyAreaCostOrder == cheapestAreaCostOrder)
{
dtReal closestPtPoly[3];
closestPointOnPolyInTile(tile, polyIdx, center, closestPtPoly);
const dtReal d = dtVdistSqr(center, closestPtPoly);
if (d < nearestDistanceSqr)
{
dtVcopy(nearestPt, closestPtPoly);
nearestDistanceSqr = d;
nearest = ref;
}
}
}
// Verify if the point is actually within requested height, caller is performing 2D check anyway (radius).
// Using nearest != 0 indicate if nearestPt has been set.
if (nearest != 0 && dtAbs(nearestPt[1] - center[1]) > extents[1])
{
nearest = 0;
}
return nearest;
}
int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const dtReal* qmin, const dtReal* qmax,
dtPolyRef* polys, const int maxPolys, bool bExcludeUnwalkable) const
{
if (tile->bvTree)
{
const dtBVNode* node = &tile->bvTree[0];
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
const dtReal* tbmin = tile->header->bmin;
const dtReal* tbmax = tile->header->bmax;
// Calculate quantized box
unsigned short bmin[3], bmax[3];
// dtClamp query box to world box.
dtReal minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
dtReal miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
dtReal minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
dtReal maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
dtReal maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
dtReal maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
// Quantize
const dtReal bvQuantFactor = m_params.resolutionParams[tile->header->resolution].bvQuantFactor; //@UE
UE_CLOG(bvQuantFactor == 0.f, LogDetour, Warning, TEXT("dtNavMesh::queryPolygonsInTile bounding volume quantization factor is zero! The query might not return the right result"));
bmin[0] = (unsigned short)(bvQuantFactor * minx) & 0xfffe;
bmin[1] = (unsigned short)(bvQuantFactor * miny) & 0xfffe;
bmin[2] = (unsigned short)(bvQuantFactor * minz) & 0xfffe;
bmax[0] = (unsigned short)(bvQuantFactor * maxx + 1) | 1;
bmax[1] = (unsigned short)(bvQuantFactor * maxy + 1) | 1;
bmax[2] = (unsigned short)(bvQuantFactor * maxz + 1) | 1;
// Traverse tree
dtPolyRef base = getPolyRefBase(tile);
int n = 0;
while (node < end)
{
const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxPolys)
{
if (!bExcludeUnwalkable || tile->polys[node->i].flags)
{
polys[n++] = base | (dtPolyRef)node->i;
}
}
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
else
{
dtReal bmin[3], bmax[3];
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
// Do not return off-mesh connection polygons.
if (p->getType() != DT_POLYTYPE_GROUND)
continue;
if (p->flags == 0 && bExcludeUnwalkable)
continue;
// Calc polygon bounds.
const dtReal* v = &tile->verts[p->verts[0]*3];
dtVcopy(bmin, v);
dtVcopy(bmax, v);
for (int j = 1; j < p->vertCount; ++j)
{
v = &tile->verts[p->verts[j]*3];
dtVmin(bmin, v);
dtVmax(bmax, v);
}
if (dtOverlapBounds(qmin,qmax, bmin,bmax))
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)i;
}
}
return n;
}
}
/// @par
///
/// The add operation will fail if the data is in the wrong format, the allocated tile
/// space is full, or there is a tile already at the specified reference.
///
/// The lastRef parameter is used to restore a tile with the same tile
/// reference it had previously used. In this case the #dtPolyRef's for the
/// tile will be restored to the same values they were before the tile was
/// removed.
///
/// @see dtCreateNavMeshData, #removeTile
//@UE BEGIN
dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
dtTileRef lastRef, dtTileRef* result)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
// Make sure the location is free.
if (getTileAt(header->x, header->y, header->layer))
return DT_FAILURE;
// Allocate a tile.
dtMeshTile* tile = 0;
if (!lastRef)
{
if (m_nextFree)
{
tile = m_nextFree;
m_nextFree = tile->next;
tile->next = 0;
}
}
else
{
// Try to relocate the tile to specific index with same salt.
int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef);
if (tileIndex >= m_maxTiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Try to find the specific tile id from the free list.
dtMeshTile* target = &m_tiles[tileIndex];
dtMeshTile* prev = 0;
tile = m_nextFree;
while (tile && tile != target)
{
prev = tile;
tile = tile->next;
}
// Could not find the correct location.
if (tile != target)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Remove from freelist
if (!prev)
m_nextFree = tile->next;
else
prev->next = tile->next;
// Restore salt.
tile->salt = decodePolyIdSalt((dtPolyRef)lastRef);
}
// Make sure we could allocate a tile.
if (!tile)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Insert tile into the position lut.
int h = computeTileHash(header->x, header->y, m_tileLutMask);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Patch header pointers.
const int headerSize = dtAlign(sizeof(dtMeshHeader));
const int vertsSize = dtAlign(sizeof(dtReal)*3*header->vertCount);
const int polysSize = dtAlign(sizeof(dtPoly)*header->polyCount);
const int linksSize = dtAlign(sizeof(dtLink)*(header->maxLinkCount));
const int detailMeshesSize = dtAlign(sizeof(dtPolyDetail)*header->detailMeshCount);
const int detailVertsSize = dtAlign(sizeof(dtReal)*3*header->detailVertCount);
const int detailTrisSize = dtAlign(sizeof(unsigned char)*4*header->detailTriCount);
const int bvtreeSize = dtAlign(sizeof(dtBVNode)*header->bvNodeCount);
const int offMeshLinksSize = dtAlign(sizeof(dtOffMeshConnection)*header->offMeshConCount);
#if WITH_NAVMESH_SEGMENT_LINKS
const int offMeshSegsSize = dtAlign(sizeof(dtOffMeshSegmentConnection)*header->offMeshSegConCount);
#endif // WITH_NAVMESH_SEGMENT_LINKS
#if WITH_NAVMESH_CLUSTER_LINKS
const int clustersSize = dtAlign(sizeof(dtCluster)*header->clusterCount);
const int clusterPolysSize = dtAlign(sizeof(unsigned short)*header->offMeshBase);
#endif // WITH_NAVMESH_CLUSTER_LINKS
const unsigned char* d = data + headerSize;
tile->verts = (dtReal*)d; d += vertsSize;
tile->polys = (dtPoly*)d; d += polysSize;
tile->links = (dtLink*)d; d += linksSize;
tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize;
tile->detailVerts = (dtReal*)d; d += detailVertsSize;
tile->detailTris = (unsigned char*)d; d += detailTrisSize;
tile->bvTree = (dtBVNode*)d; d += bvtreeSize;
tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize;
// If there are no items in the bvtree, reset the tree pointer.
if (!bvtreeSize)
tile->bvTree = 0;
#if WITH_NAVMESH_SEGMENT_LINKS
tile->offMeshSeg = (dtOffMeshSegmentConnection*)d; d += offMeshSegsSize;
#endif // WITH_NAVMESH_SEGMENT_LINKS
#if WITH_NAVMESH_CLUSTER_LINKS
tile->clusters = (dtCluster*)d; d += clustersSize;
tile->polyClusters = (unsigned short*)d; d += clusterPolysSize;
const bool bHasClusters = header->clusterCount > 0;
if (bHasClusters)
{
for (int i = 0; i < header->clusterCount; i++)
{
tile->clusters[i].numLinks = 0;
tile->clusters[i].firstLink = DT_NULL_LINK;
}
}
else
{
tile->polyClusters = 0;
}
#else
const bool bHasClusters = false;
#endif // WITH_NAVMESH_CLUSTER_LINKS
// Build links freelist
tile->linksFreeList = 0;
tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
for (int i = 0; i < header->maxLinkCount-1; ++i)
tile->links[i].next = i+1;
// Initialize dynamic links array
tile->dynamicFreeListO = DT_NULL_LINK;
tile->dynamicLinksO.resize(0);
#if WITH_NAVMESH_CLUSTER_LINKS
tile->dynamicFreeListC = DT_NULL_LINK;
tile->dynamicLinksC.resize(0);
#endif // WITH_NAVMESH_CLUSTER_LINKS
// Init tile.
tile->header = header;
tile->data = data;
tile->dataSize = dataSize;
tile->flags = flags;
connectIntLinks(tile);
baseOffMeshLinks(tile);
// Create connections with neighbour tiles.
ReadTilesHelper TileArray;
int nneis = 0;
dtMeshTile** neis = nullptr;
// Connect with layers in current tile.
nneis = getTileCountAt(header->x, header->y);
neis = TileArray.PrepareArray(nneis);
if (neis == nullptr)
{
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
getTilesAt(header->x, header->y, neis, nneis);
for (int j = 0; j < nneis; ++j)
{
if (neis[j] != tile)
{
connectExtLinks(tile, neis[j], -1, bHasClusters);
connectExtLinks(neis[j], tile, -1, bHasClusters);
connectExtOffMeshLinks(tile, neis[j], -1, bHasClusters);
}
connectExtOffMeshLinks(neis[j], tile, -1, bHasClusters);
}
// Connect with neighbour tiles.
for (int i = 0; i < 8; ++i)
{
const int neighbourTileCount = getNeighbourTilesCountAt(header->x, header->y, i);
neis = TileArray.PrepareArray(neighbourTileCount );
if (neis == nullptr)
{
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
getNeighbourTilesAt(header->x, header->y, i, neis, neighbourTileCount);
for (int j = 0; j < neighbourTileCount; ++j)
{
// Skip diagonal tiles, nothing to connect there
// (tiles are visited in a ring around the current tile, even tiles are primary directions)
if ((i & 1) == 0)
{
connectExtLinks(tile, neis[j], i, bHasClusters);
connectExtLinks(neis[j], tile, dtOppositeTile(i), bHasClusters);
}
connectExtOffMeshLinks(tile, neis[j], i, bHasClusters);
connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i), bHasClusters);
}
}
if (result)
*result = getTileRef(tile);
dtStatsPostAddTile(*tile);
return DT_SUCCESS;
}
//@UE END
#if WITH_NAVMESH_SEGMENT_LINKS
void dtNavMesh::processSegmentLinksForTile(dtTileRef tileRef, unsigned int maxSkippedNeigborTiles, dtTileRef* skippedNeigborTiles, unsigned int& numSkippedNeighborTiles)
{
dtMeshTile* tile = getMutableTileByRef(tileRef);
if (tile == nullptr || tile->header == nullptr)
{
return;
}
const int tileX = tile->header->x;
const int tileY = tile->header->y;
const unsigned short tileL = tile->header->layer;
UE_LOG(LogSegmentLink, Log, TEXT("%hs (%i,%i,%i)"), __FUNCTION__, tile->header->x, tile->header->y, tile->header->layer);
// Find list of intersections with tile polys.
dtOffMeshSegmentData* segList = initSegmentIntersection(*this, tile);
if (segList == nullptr)
{
return;
}
numSkippedNeighborTiles = 0;
// Create connections with neighbour tiles.
ReadTilesHelper TileArray;
// Connect with layers in current tile.
UE_LOG(LogSegmentLink, Log, TEXT(" %hs Connect with layers in current tile."), __FUNCTION__);
int nneis = getTileCountAt(tileX, tileY);
dtMeshTile** neis = TileArray.PrepareArray(nneis);
getTilesAt(tileX, tileY, neis, nneis);
for (int j = 0; j < nneis; ++j)
{
dtMeshTile* neiTile = neis[j];
if (neiTile != tile && neiTile->header)
{
const int neiX = neiTile->header->x;
const int neiY = neiTile->header->y;
const unsigned short neiL = neiTile->header->layer;
if (neiX < tileX && neiY < tileY && neiL < tileL)
{
if (numSkippedNeighborTiles < maxSkippedNeigborTiles)
{
skippedNeigborTiles[numSkippedNeighborTiles] = getTileRef(neis[j]);
}
++numSkippedNeighborTiles;
continue;
}
appendSegmentIntersection(*this, segList, tile, neis[j]);
}
}
// Connect with neighbour tiles.
UE_LOG(LogSegmentLink, Log, TEXT(" %hs Connect with neighbour tiles."), __FUNCTION__);
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesCountAt(tileX, tileY, i);
neis = TileArray.PrepareArray(nneis);
getNeighbourTilesAt(tileX, tileY, i, neis, nneis);
for (int j = 0; j < nneis; ++j)
{
dtMeshTile* neiTile = neis[j];
if (neiTile->header)
{
const int neiX = neiTile->header->x;
const int neiY = neiTile->header->y;
const unsigned short neiL = neiTile->header->layer;
if (neiX < tileX && neiY < tileY && neiL < tileL)
{
if (numSkippedNeighborTiles < maxSkippedNeigborTiles)
{
skippedNeigborTiles[numSkippedNeighborTiles] = getTileRef(neis[j]);
}
++numSkippedNeighborTiles;
continue;
}
appendSegmentIntersection(*this, segList, tile, neis[j]);
}
}
}
createSegmentLinks(this, segList, tile);
dtFree(segList, DT_ALLOC_TEMP);
}
#endif // WITH_NAVMESH_SEGMENT_LINKS
const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return tile;
}
tile = tile->next;
}
return 0;
}
int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const
{
int nx = x, ny = y;
switch (side)
{
case 0: nx++; break;
case 1: nx++; ny++; break;
case 2: ny++; break;
case 3: nx--; ny++; break;
case 4: nx--; break;
case 5: nx--; ny--; break;
case 6: ny--; break;
case 7: nx++; ny--; break;
};
return getTilesAt(nx, ny, (const dtMeshTile**)tiles, maxTiles);
}
// @UE BEGIN
int dtNavMesh::getNeighbourTilesCountAt(const int x, const int y, const int side) const
{
int nx = x, ny = y;
switch (side)
{
case 0: nx++; break;
case 1: nx++; ny++; break;
case 2: ny++; break;
case 3: nx--; ny++; break;
case 4: nx--; break;
case 5: nx--; ny--; break;
case 6: ny--; break;
case 7: nx++; ny--; break;
};
return getTileCountAt(nx, ny);
}
int dtNavMesh::getTileCountAt(const int x, const int y) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
n++;
}
tile = tile->next;
}
return n;
}
// @UE END
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
/// @par
///
/// This function will not fail if the tiles array is too small to hold the
/// entire result set. It will simply fill the array to capacity.
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return getTileRef(tile);
}
tile = tile->next;
}
return 0;
}
const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const
{
if (!ref)
return 0;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return 0;
const dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return 0;
return tile;
}
dtMeshTile* dtNavMesh::getMutableTileByRef(dtTileRef ref) const
{
if (!ref)
return 0;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return 0;
dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return 0;
return tile;
}
int dtNavMesh::getMaxTiles() const
{
return m_maxTiles;
}
dtMeshTile* dtNavMesh::getTile(int i)
{
return &m_tiles[i];
}
const dtMeshTile* dtNavMesh::getTile(int i) const
{
return &m_tiles[i];
}
bool dtNavMesh::isTileLocInValidRange(const dtReal tx, const dtReal ty) const
{
return (tx >= (dtReal)std::numeric_limits<int>::min()) &&
(tx <= (dtReal)std::numeric_limits<int>::max()) &&
(ty >= (dtReal)std::numeric_limits<int>::min()) &&
(ty <= (dtReal)std::numeric_limits<int>::max());
}
void dtNavMesh::calcTileLoc(const dtReal* pos, dtReal* tx, dtReal* ty) const
{
*tx = dtFloor((pos[0] - m_orig[0]) / m_tileWidth);
*ty = dtFloor((pos[2] - m_orig[2]) / m_tileHeight);
}
void dtNavMesh::calcTileLoc(const dtReal* pos, int* tx, int* ty) const
{
dtReal txReal = 0.;
dtReal tyReal = 0.;
calcTileLoc(pos, &txReal, &tyReal);
*tx = (int)txReal;
*ty = (int)tyReal;
}
bool dtNavMesh::isTileLocInValidRange(const dtReal* pos) const
{
dtReal tx = 0.;
dtReal ty = 0.;
calcTileLoc(pos, &tx, &ty);
return isTileLocInValidRange(tx, ty);
}
dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
return DT_SUCCESS;
}
/// @par
///
/// @warning Only use this function if it is known that the provided polygon
/// reference is valid. This function is faster than #getTileAndPolyByRef, but
/// it does not validate the reference.
void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
}
bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const
{
if (!ref) return false;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
return true;
}
/// @par
///
/// This function returns the data for the tile so that, if desired,
/// it can be added back to the navigation mesh at a later point.
///
/// @see #addTile
dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize)
{
if (!ref)
return DT_FAILURE | DT_INVALID_PARAM;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return DT_FAILURE | DT_INVALID_PARAM;
dtStatsPreRemoveTile(*tile);
// Remove tile from hash lookup.
int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask);
dtMeshTile* prev = 0;
dtMeshTile* cur = m_posLookup[h];
while (cur)
{
if (cur == tile)
{
if (prev)
prev->next = cur->next;
else
m_posLookup[h] = cur->next;
break;
}
prev = cur;
cur = cur->next;
}
// Remove connections to neighbour tiles.
// Create connections with neighbour tiles.
ReadTilesHelper TileArray;
int nneis = getTileCountAt(tile->header->x, tile->header->y);
dtMeshTile** neis = TileArray.PrepareArray(nneis);
if (neis == nullptr)
{
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
// Connect with layers in current tile.
getTilesAt(tile->header->x, tile->header->y, neis, nneis);
for (int j = 0; j < nneis; ++j)
{
CA_ASSUME(j < TileArray.NumAllocated);
if (neis[j] == tile)
continue;
unconnectExtLinks(neis[j], tile);
}
// Connect with neighbour tiles.
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesCountAt(tile->header->x, tile->header->y, i);
neis = TileArray.PrepareArray(nneis);
if (neis == nullptr)
{
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, nneis);
for (int j = 0; j < nneis; ++j)
{
CA_ASSUME(j < TileArray.NumAllocated);
unconnectExtLinks(neis[j], tile);
}
}
// Whether caller wants to own tile data
bool callerOwnsData = (data && dataSize);
// Reset tile.
if ((tile->flags & DT_TILE_FREE_DATA) && !callerOwnsData)
{
// Owns data
dtFree(tile->data, DT_ALLOC_PERM_TILE_DATA);
tile->data = 0;
tile->dataSize = 0;
if (data) *data = 0;
if (dataSize) *dataSize = 0;
}
else
{
if (data) *data = tile->data;
if (dataSize) *dataSize = tile->dataSize;
}
tile->header = 0;
tile->flags = 0;
tile->linksFreeList = 0;
tile->polys = 0;
tile->verts = 0;
tile->links = 0;
tile->detailMeshes = 0;
tile->detailVerts = 0;
tile->detailTris = 0;
tile->bvTree = 0;
tile->offMeshCons = 0;
// Update salt, salt should never be zero.
tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
if (tile->salt == 0)
tile->salt++;
// Add to free list.
tile->next = m_nextFree;
m_nextFree = tile;
return DT_SUCCESS;
}
dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return (dtTileRef)encodePolyId(tile->salt, it, 0);
}
/// @par
///
/// Example use case:
/// @code
///
/// const dtPolyRef base = navmesh->getPolyRefBase(tile);
/// for (int i = 0; i < tile->header->polyCount; ++i)
/// {
/// const dtPoly* p = &tile->polys[i];
/// const dtPolyRef ref = base | (dtPolyRef)i;
///
/// // Use the reference to access the polygon data.
/// }
/// @endcode
dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return encodePolyId(tile->salt, it, 0);
}
dtClusterRef dtNavMesh::getClusterRefBase(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return encodePolyId(tile->salt, it, 0);
}
struct dtTileState
{
int magic; // Magic number, used to identify the data.
int version; // Data version number.
dtTileRef ref; // Tile ref at the time of storing the data.
};
struct dtPolyState
{
unsigned short flags; // Flags (see dtPolyFlags).
unsigned char area; // Area ID of the polygon.
};
/// @see #storeTileState
int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const
{
if (!tile) return 0;
const int headerSize = dtAlign(sizeof(dtTileState));
const int polyStateSize = dtAlign(sizeof(dtPolyState) * tile->header->polyCount);
return headerSize + polyStateSize;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note The state data is only valid until the tile reference changes.
/// @see #getTileStateSize, #restoreTileState
dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileState* tileState = (dtTileState*)data; data += dtAlign(sizeof(dtTileState));
dtPolyState* polyStates = (dtPolyState*)data; data += dtAlign(sizeof(dtPolyState) * tile->header->polyCount);
// Store tile state.
tileState->magic = DT_NAVMESH_STATE_MAGIC;
tileState->version = DT_NAVMESH_STATE_VERSION;
tileState->ref = getTileRef(tile);
// Store per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
const dtPoly* p = &tile->polys[i];
dtPolyState* s = &polyStates[i];
s->flags = p->flags;
s->area = p->getArea();
}
return DT_SUCCESS;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
/// @see #storeTileState
dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize)
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_INVALID_PARAM;
const dtTileState* tileState = (const dtTileState*)data; data += dtAlign(sizeof(dtTileState));
const dtPolyState* polyStates = (const dtPolyState*)data; data += dtAlign(sizeof(dtPolyState) * tile->header->polyCount);
// Check that the restore is possible.
if (tileState->version != DT_NAVMESH_STATE_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
if (tileState->ref != getTileRef(tile))
return DT_FAILURE | DT_INVALID_PARAM;
// Restore per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
const dtPolyState* s = &polyStates[i];
p->flags = s->flags;
p->setArea(s->area);
}
return DT_SUCCESS;
}
/// @par
///
/// Off-mesh connections are stored in the navigation mesh as special 2-vertex
/// polygons with a single edge. At least one of the vertices is expected to be
/// inside a normal polygon. So an off-mesh connection is "entered" from a
/// normal polygon at one of its endpoints. This is the polygon identified by
/// the prevRef parameter.
/// For segment links, find the starting position closest to currentPos return the end position closest to that starting position.
/// If currentPos is not provided, use the midpoint on the starting edge as the starting position.
dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, const dtReal* currentPos, dtReal* startPos, dtReal* endPos) const
{
unsigned int salt, it, ip;
if (!polyRef)
return DT_FAILURE;
// Get current polygon
decodePolyId(polyRef, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
if (poly->getType() == DT_POLYTYPE_GROUND)
return DT_FAILURE;
// Figure out which way to hand out the vertices.
int idx0 = 0, idx1 = 1;
// Find link that points to first vertex.
unsigned int i = poly->firstLink;
while (i != DT_NULL_LINK)
{
const dtLink& link = getLink(tile, i);
if (link.edge == 0)
{
if (link.ref != prevRef)
{
idx0 = 1;
idx1 = 0;
}
break;
}
i = link.next;
}
//@UE BEGIN
#if WITH_NAVMESH_SEGMENT_LINKS
if (poly->getType() == DT_POLYTYPE_OFFMESH_SEGMENT)
{
idx0 = (idx0 == 0) ? 0 : 2;
idx1 = (idx1 == 1) ? 1 : 3;
const int idx2 = (idx0 == 0) ? 2 : 0;
const int idx3 = (idx1 == 1) ? 3 : 1;
dtReal start0[3], start1[3];
dtVcopy(start0, &tile->verts[poly->verts[idx0]*3]);
dtVcopy(start1, &tile->verts[poly->verts[idx1]*3]);
dtReal t = 0;
// Find the point on the segment link edge that is closest to the agent's current position.
// However, this function can be called with a null currentPos. In that case, just use the midpoint of the edge.
if (currentPos != nullptr)
{
dtDistancePtSegSqr2D(currentPos, start0, start1, t);
}
else
{
t = 0.5;
}
dtVlerp(startPos, start0, start1, t);
// We want to use the shortest path to cross the segment link as this is generally the most sensible thing to do.
// This change also matches the change to the string pulling algorithm used by traditional path following.
dtReal end0[3], end1[3];
dtVcopy(end0, &tile->verts[poly->verts[idx2] * 3]);
dtVcopy(end1, &tile->verts[poly->verts[idx3] * 3]);
dtDistancePtSegSqr2D(startPos, end0, end1, t);
dtVlerp(endPos, end0, end1, t);
}
else
#endif // WITH_NAVMESH_SEGMENT_LINKS
//@UE END
{
dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]);
}
return DT_SUCCESS;
}
const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
if (!ref)
return 0;
// Get current polygon
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return 0;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_POINT)
return 0;
const unsigned int idx = ip - tile->header->offMeshBase;
dtAssert(idx < (unsigned int)tile->header->offMeshConCount);
return &tile->offMeshCons[idx];
}
//@UE BEGIN
#if WITH_NAVMESH_SEGMENT_LINKS
const dtOffMeshSegmentConnection* dtNavMesh::getOffMeshSegmentConnectionByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
if (!ref)
return 0;
// Get current polygon
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return 0;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_SEGMENT)
return 0;
const unsigned int idx = (ip - tile->header->offMeshSegPolyBase) / DT_MAX_OFFMESH_SEGMENT_PARTS;
dtAssert(idx < (unsigned int)tile->header->offMeshSegConCount);
return &tile->offMeshSeg[idx];
}
void dtNavMesh::updateOffMeshSegmentConnectionByUserId(unsigned int userId, unsigned char newArea, unsigned short newFlags)
{
for (int it = 0; it < m_maxTiles; it++)
{
dtMeshTile* tile = &m_tiles[it];
if (tile == 0 || tile->header == 0)
continue;
for (int ic = 0; ic < tile->header->offMeshSegConCount; ic++)
{
dtOffMeshSegmentConnection& con = tile->offMeshSeg[ic];
if (con.userId == userId)
{
for (int ip = 0; ip < con.npolys; ip++)
{
dtPoly* poly = &tile->polys[tile->header->offMeshSegPolyBase + con.firstPoly + ip];
poly->setArea(newArea);
poly->flags = newFlags;
}
}
}
}
}
#endif // WITH_NAVMESH_SEGMENT_LINKS
//@UE END
void dtNavMesh::updateOffMeshConnectionByUserId(unsigned long long int userId, unsigned char newArea, unsigned short newFlags)
{
for (int it = 0; it < m_maxTiles; it++)
{
dtMeshTile* tile = &m_tiles[it];
if (tile == 0 || tile->header == 0)
continue;
for (int ic = 0; ic < tile->header->offMeshConCount; ic++)
{
dtOffMeshConnection& con = tile->offMeshCons[ic];
if (con.userId == userId)
{
dtPoly* poly = &tile->polys[con.poly];
poly->setArea(newArea);
poly->flags = newFlags;
}
}
}
}
dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
// Change flags.
poly->flags = flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultFlags = poly->flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
poly->setArea(area);
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultArea = poly->getArea();
return DT_SUCCESS;
}
//@UE BEGIN
void dtNavMesh::applyWorldOffset(const dtReal* offset)
{
//Shift navmesh origin
dtVadd(m_params.orig, m_params.orig, offset);
dtVadd(m_orig, m_orig, offset);
// Iterate over all tiles and apply provided offset
for (int i = 0; i < m_maxTiles; ++i)
{
dtMeshTile& tile = m_tiles[i];
if (tile.header != NULL)
{
// Shift tile bounds
dtVadd(tile.header->bmin, tile.header->bmin, offset);
dtVadd(tile.header->bmax, tile.header->bmax, offset);
//Shift tile vertices
for (int j = 0; j < tile.header->vertCount; ++j)
{
dtVadd(&(tile.verts[j*3]), &(tile.verts[j*3]), offset);
}
//Shift tile details vertices
for (int j = 0; j < tile.header->detailVertCount; ++j)
{
dtVadd(&(tile.detailVerts[j*3]), &(tile.detailVerts[j*3]), offset);
}
//Shift off-mesh connections
for (int j = 0; j < tile.header->offMeshConCount; ++j)
{
dtVadd(&(tile.offMeshCons[j].pos[0]), &(tile.offMeshCons[j].pos[0]), offset);
dtVadd(&(tile.offMeshCons[j].pos[3]), &(tile.offMeshCons[j].pos[3]), offset);
}
#if WITH_NAVMESH_SEGMENT_LINKS
// Shift off-mesh segment connections
for (int j = 0; j < tile.header->offMeshSegConCount; ++j)
{
dtVadd(&(tile.offMeshSeg[j].startA[0]), &(tile.offMeshSeg[j].startA[0]), offset);
dtVadd(&(tile.offMeshSeg[j].endA[0]), &(tile.offMeshSeg[j].endA[0]), offset);
dtVadd(&(tile.offMeshSeg[j].startB[0]), &(tile.offMeshSeg[j].startB[0]), offset);
dtVadd(&(tile.offMeshSeg[j].endB[0]), &(tile.offMeshSeg[j].endB[0]), offset);
}
#endif // WITH_NAVMESH_SEGMENT_LINKS
#if WITH_NAVMESH_CLUSTER_LINKS
// Shift clusters
for (int j = 0; j < tile.header->clusterCount; ++j)
{
dtVadd(&(tile.clusters[j].center[0]), &(tile.clusters[j].center[0]), offset);
}
#endif // WITH_NAVMESH_CLUSTER_LINKS
}
}
}
void dtNavMesh::applyAreaCostOrder(unsigned char* costOrder)
{
memcpy(m_areaCostOrder, costOrder, sizeof(m_areaCostOrder));
}
//@UE END