// Copyright Epic Games, Inc. All Rights Reserved. // Modified version of Recast/Detour's source file // // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include "CoreMinimal.h" #include "Detour/DetourCommon.h" #include "Detour/DetourAssert.h" #include "Detour/DetourAlloc.h" #include "Detour/DetourLargeWorldCoordinates.h" #include "DetourTileCache/DetourTileCacheBuilder.h" #define _USE_MATH_DEFINES static const unsigned DT_UNSET_PATCH_HEIGHT = 0xffff; static const unsigned DT_UNSET_LAYER_HEIGHT = 0xffff; struct dtHeightPatch { inline dtHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {} inline ~dtHeightPatch() { dtFree(data, DT_ALLOC_TEMP); } unsigned short* data; int xmin, ymin, width, height; }; inline bool isCellConnected(const dtTileCacheLayer& layer, const int idx, const int dir) { return (layer.cons[idx] & (1 << dir)) != 0; } static void getLayerHeightData(dtTileCacheLayer& layer, const unsigned short* poly, const unsigned short* verts, const int nverts, dtHeightPatch& hp, dtIntArray& stack) { // Floodfill the heightfield to get 2D height data, // starting at vertex locations as seeds. // Note: Reads to the compact heightfield are offset by border size (bs) // since border size offset is already removed from the polymesh vertices. memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height); stack.resize(0); static const int offset[9*2] = { 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0, }; // Use poly vertices as seed points for the flood fill. for (int j = 0; j < nverts; ++j) { int dmin = DT_UNSET_LAYER_HEIGHT; int cx = 0, cy = 0; for (int k = 0; k < 9; ++k) { const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0]; const int ay = (int)verts[poly[j]*3+2] + offset[k*2+1]; if (ax < hp.xmin || ax >= hp.xmin+hp.width || ay < hp.ymin || ay >= hp.ymin+hp.height) { continue; } const int hidx = ax+ay*layer.header->width; const int d = layer.heights[hidx]; if (d < dmin) { cx = ax; cy = ay; dmin = d; } } if (dmin != DT_UNSET_LAYER_HEIGHT) { stack.push(cx); stack.push(cy); } } // Find center of the polygon using flood fill. int pcx = 0, pcy = 0; for (int j = 0; j < nverts; ++j) { pcx += (int)verts[poly[j]*3+0]; pcy += (int)verts[poly[j]*3+2]; } pcx /= nverts; pcy /= nverts; for (int i = 0; i < stack.size(); i += 2) { const int cx = stack[i+0]; const int cy = stack[i+1]; const int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width; hp.data[idx] = 1; } while (stack.size() > 0) { int cy = stack.pop(); int cx = stack.pop(); // Check if close to center of the polygon. if (dtAbs(cx-pcx) <= 1 && dtAbs(cy-pcy) <= 1) { stack.resize(0); stack.push(cx); stack.push(cy); break; } for (int dir = 0; dir < 4; ++dir) { const int ax = cx + getDirOffsetX(dir); const int ay = cy + getDirOffsetY(dir); const int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width; const int hidx = ax+ay*layer.header->width; if (ax < hp.xmin || ax >= (hp.xmin+hp.width) || ay < hp.ymin || ay >= (hp.ymin+hp.height) || layer.heights[hidx] == DT_UNSET_LAYER_HEIGHT || hp.data[idx] != 0 || !isCellConnected(layer, cx+cy*layer.header->width, dir)) { continue; } hp.data[idx] = 1; stack.push(ax); stack.push(ay); } } memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); // Mark start locations. for (int i = 0; i < stack.size(); i += 2) { const int cx = stack[i+0]; const int cy = stack[i+1]; const int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width; const int hidx = cx+cy*layer.header->width; hp.data[idx] = layer.heights[hidx]; } static const int RETRACT_SIZE = 256; int head = 0; while (head*2 < stack.size()) { int cx = stack[head*2+0]; int cy = stack[head*2+1]; head++; if (head >= RETRACT_SIZE) { head = 0; if (stack.size() > RETRACT_SIZE*2) memmove(&stack[0], &stack[RETRACT_SIZE*2], sizeof(int)*(stack.size()-RETRACT_SIZE*2)); stack.resize(stack.size()-RETRACT_SIZE*2); } for (int dir = 0; dir < 4; ++dir) { const int ax = cx + getDirOffsetX(dir); const int ay = cy + getDirOffsetY(dir); const int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width; const int hidx = ax+ay*layer.header->width; if (ax < hp.xmin || ax >= (hp.xmin+hp.width) || ay < hp.ymin || ay >= (hp.ymin+hp.height) || hp.data[idx] != DT_UNSET_PATCH_HEIGHT || layer.heights[hidx] == DT_UNSET_LAYER_HEIGHT || !isCellConnected(layer, cx+cy*layer.header->width, dir)) { continue; } hp.data[idx] = layer.heights[hidx]; stack.push(ax); stack.push(ay); } } } static unsigned short getHeight(const dtReal fx, const dtReal fy, const dtReal fz, const dtReal /*cs*/, const dtReal ics, const dtReal ch, const dtHeightPatch& hp) { int ix = (int)dtFloor(fx*ics + 0.01f); int iz = (int)dtFloor(fz*ics + 0.01f); ix = dtClamp(ix-hp.xmin, 0, hp.width - 1); iz = dtClamp(iz-hp.ymin, 0, hp.height - 1); unsigned short h = hp.data[ix+iz*hp.width]; if (h == DT_UNSET_PATCH_HEIGHT) { //@UE BEGIN // setting fallback value in case proper height is not found h = (unsigned short)dtFloor(fy/ch); //@UE END // Special case when data might be bad. // Find nearest neighbour pixel which has valid height. const int off[8*2] = { -1,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1}; dtReal dmin = DT_REAL_MAX; for (int i = 0; i < 8; ++i) { const int nx = ix+off[i*2+0]; const int nz = iz+off[i*2+1]; if (nx < 0 || nz < 0 || nx >= hp.width || nz >= hp.height) continue; const unsigned short nh = hp.data[nx+nz*hp.width]; if (nh == DT_UNSET_PATCH_HEIGHT) continue; const dtReal d = dtAbs(nh*ch - fy); if (d < dmin) { h = nh; dmin = d; } } } return h; } namespace TileCacheFunc { inline dtReal vdot2(const dtReal* a, const dtReal* b) { return a[0] * b[0] + a[2] * b[2]; } inline dtReal vdistSq2(const dtReal* p, const dtReal* q) { const dtReal dx = q[0] - p[0]; const dtReal dy = q[2] - p[2]; return dx*dx + dy*dy; } inline dtReal vdist2(const dtReal* p, const dtReal* q) { return dtSqrt(vdistSq2(p, q)); } inline dtReal vcross2(const dtReal* p1, const dtReal* p2, const dtReal* p3) { const dtReal u1 = p2[0] - p1[0]; const dtReal v1 = p2[2] - p1[2]; const dtReal u2 = p3[0] - p1[0]; const dtReal v2 = p3[2] - p1[2]; return u1 * v2 - v1 * u2; } static dtReal distancePtSeg(const dtReal* pt, const dtReal* p, const dtReal* q) { dtReal pqx = q[0] - p[0]; dtReal pqy = q[1] - p[1]; dtReal pqz = q[2] - p[2]; dtReal dx = pt[0] - p[0]; dtReal dy = pt[1] - p[1]; dtReal dz = pt[2] - p[2]; dtReal d = pqx*pqx + pqy*pqy + pqz*pqz; dtReal t = pqx*dx + pqy*dy + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dy = p[1] + t*pqy - pt[1]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dy*dy + dz*dz; } static dtReal distancePtSeg2d(const dtReal* pt, const dtReal* p, const dtReal* q) { dtReal pqx = q[0] - p[0]; dtReal pqz = q[2] - p[2]; dtReal dx = pt[0] - p[0]; dtReal dz = pt[2] - p[2]; dtReal d = pqx*pqx + pqz*pqz; dtReal t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dz*dz; } static dtReal distPtTri(const dtReal* p, const dtReal* a, const dtReal* b, const dtReal* c) { dtReal v0[3], v1[3], v2[3]; dtVsub(v0, c, a); dtVsub(v1, b, a); dtVsub(v2, p, a); const dtReal dot00 = vdot2(v0, v0); const dtReal dot01 = vdot2(v0, v1); const dtReal dot02 = vdot2(v0, v2); const dtReal dot11 = vdot2(v1, v1); const dtReal dot12 = vdot2(v1, v2); // Compute barycentric coordinates const dtReal invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); const dtReal u = (dot11 * dot02 - dot01 * dot12) * invDenom; dtReal v = (dot00 * dot12 - dot01 * dot02) * invDenom; // If point lies inside the triangle, return interpolated y-coord. static const dtReal EPS = 1e-4f; if (u >= -EPS && v >= -EPS && (u + v) <= 1 + EPS) { const dtReal y = a[1] + v0[1] * u + v1[1] * v; return dtAbs(y - p[1]); } return DT_REAL_MAX; } static dtReal distToTriMesh(const dtReal* p, const dtReal* verts, const int /*nverts*/, const int* tris, const int ntris) { dtReal dmin = DT_REAL_MAX; for (int i = 0; i < ntris; ++i) { const dtReal* va = &verts[tris[i * 4 + 0] * 3]; const dtReal* vb = &verts[tris[i * 4 + 1] * 3]; const dtReal* vc = &verts[tris[i * 4 + 2] * 3]; dtReal d = distPtTri(p, va, vb, vc); if (d < dmin) dmin = d; } if (dmin == DT_REAL_MAX) return -1; return dmin; } static dtReal distToPoly(int nvert, const dtReal* verts, const dtReal* p) { dtReal dmin = DT_REAL_MAX; int i, j, c = 0; for (i = 0, j = nvert - 1; i < nvert; j = i++) { const dtReal* vi = &verts[i * 3]; const dtReal* vj = &verts[j * 3]; if (((vi[2] > p[2]) != (vj[2] > p[2])) && (p[0] < (vj[0] - vi[0]) * (p[2] - vi[2]) / (vj[2] - vi[2]) + vi[0])) c = !c; dmin = dtMin(dmin, distancePtSeg2d(p, vj, vi)); } return c ? -dmin : dmin; } static bool circumCircle(const dtReal* p1, const dtReal* p2, const dtReal* p3, dtReal* c, dtReal& r) { static const dtReal EPS = 1e-6f; const dtReal cp = vcross2(p1, p2, p3); if (dtAbs(cp) > EPS) { const dtReal p1Sq = vdot2(p1, p1); const dtReal p2Sq = vdot2(p2, p2); const dtReal p3Sq = vdot2(p3, p3); c[0] = (p1Sq*(p2[2] - p3[2]) + p2Sq*(p3[2] - p1[2]) + p3Sq*(p1[2] - p2[2])) / (2 * cp); c[2] = (p1Sq*(p3[0] - p2[0]) + p2Sq*(p1[0] - p3[0]) + p3Sq*(p2[0] - p1[0])) / (2 * cp); r = vdist2(c, p1); return true; } c[0] = p1[0]; c[2] = p1[2]; r = 0; return false; } } namespace TileCacheData { enum EdgeValues { UNDEF = -1, HULL = -2, }; } namespace TileCacheFunc { static int findEdge(const int* edges, int nedges, int s, int t) { for (int i = 0; i < nedges; i++) { const int* e = &edges[i * 4]; if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s)) return i; } return TileCacheData::UNDEF; } static int addEdge(int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r) { if (nedges >= maxEdges) { return TileCacheData::UNDEF; } // Add edge if not already in the triangulation. int e = findEdge(edges, nedges, s, t); if (e == TileCacheData::UNDEF) { int* edge = &edges[nedges * 4]; edge[0] = s; edge[1] = t; edge[2] = l; edge[3] = r; return nedges++; } else { return TileCacheData::UNDEF; } } static void updateLeftFace(int* e, int s, int t, int f) { if (e[0] == s && e[1] == t && e[2] == TileCacheData::UNDEF) e[2] = f; else if (e[1] == s && e[0] == t && e[3] == TileCacheData::UNDEF) e[3] = f; } static int overlapSegSeg2d(const dtReal* a, const dtReal* b, const dtReal* c, const dtReal* d) { const dtReal a1 = vcross2(a, b, d); const dtReal a2 = vcross2(a, b, c); if (a1*a2 < 0.0f) { dtReal a3 = vcross2(c, d, a); dtReal a4 = a3 + a2 - a1; if (a3 * a4 < 0.0f) return 1; } return 0; } static bool overlapEdges(const dtReal* pts, const int* edges, int nedges, int s1, int t1) { for (int i = 0; i < nedges; ++i) { const int s0 = edges[i * 4 + 0]; const int t0 = edges[i * 4 + 1]; // Same or connected edges do not overlap. if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1) continue; if (overlapSegSeg2d(&pts[s0 * 3], &pts[t0 * 3], &pts[s1 * 3], &pts[t1 * 3])) return true; } return false; } static void completeFacet(const dtReal* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e) { static const dtReal EPS = 1e-5f; int* edge = &edges[e * 4]; // Cache s and t. int s, t; if (edge[2] == TileCacheData::UNDEF) { s = edge[0]; t = edge[1]; } else if (edge[3] == TileCacheData::UNDEF) { s = edge[1]; t = edge[0]; } else { // Edge already completed. return; } // Find best point on left of edge. int pt = npts; dtReal c[3] = { 0, 0, 0 }; dtReal r = -1; for (int u = 0; u < npts; ++u) { if (u == s || u == t) continue; if (vcross2(&pts[s * 3], &pts[t * 3], &pts[u * 3]) > EPS) { if (r < 0) { // The circle is not updated yet, do it now. pt = u; circumCircle(&pts[s * 3], &pts[t * 3], &pts[u * 3], c, r); continue; } const dtReal d = vdist2(c, &pts[u * 3]); // UE: increased tolerance of safe checks from 0.001f // it was producing (rarely) overlapping edges const dtReal tol = 0.005f; if (d > r*(1 + tol)) { // Outside current circumcircle, skip. continue; } else if (d < r*(1 - tol)) { // Inside safe circumcircle, update circle. pt = u; circumCircle(&pts[s * 3], &pts[t * 3], &pts[u * 3], c, r); } else { // Inside epsilon circum circle, do extra tests to make sure the edge is valid. // s-u and t-u cannot overlap with s-pt nor t-pt if they exists. if (overlapEdges(pts, edges, nedges, s, u)) continue; if (overlapEdges(pts, edges, nedges, t, u)) continue; // Edge is valid. pt = u; circumCircle(&pts[s * 3], &pts[t * 3], &pts[u * 3], c, r); } } } // Add new triangle or update edge info if s-t is on hull. if (pt < npts) { // Update face information of edge being completed. updateLeftFace(&edges[e * 4], s, t, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, pt, s); if (e == TileCacheData::UNDEF) addEdge(edges, nedges, maxEdges, pt, s, nfaces, TileCacheData::UNDEF); else updateLeftFace(&edges[e * 4], pt, s, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, t, pt); if (e == TileCacheData::UNDEF) addEdge(edges, nedges, maxEdges, t, pt, nfaces, TileCacheData::UNDEF); else updateLeftFace(&edges[e * 4], t, pt, nfaces); nfaces++; } else { updateLeftFace(&edges[e * 4], s, t, TileCacheData::HULL); } } static void delaunayHull(const int npts, const dtReal* pts, const int nhull, const int* hull, dtIntArray& tris, dtIntArray& edges) { int nfaces = 0; int nedges = 0; const int maxEdges = npts * 10; edges.resize(maxEdges * 4); for (int i = 0, j = nhull - 1; i < nhull; j = i++) addEdge(&edges[0], nedges, maxEdges, hull[j], hull[i], TileCacheData::HULL, TileCacheData::UNDEF); int currentEdge = 0; while (currentEdge < nedges) { if (edges[currentEdge * 4 + 2] == TileCacheData::UNDEF) completeFacet(pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); if (edges[currentEdge * 4 + 3] == TileCacheData::UNDEF) completeFacet(pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); currentEdge++; } // Create tris tris.resize(nfaces * 4); for (int i = 0; i < nfaces * 4; ++i) tris[i] = -1; for (int i = 0; i < nedges; ++i) { const int* e = &edges[i * 4]; if (e[3] >= 0) { // Left face int* t = &tris[e[3] * 4]; if (t[0] == -1) { t[0] = e[0]; t[1] = e[1]; } else if (t[0] == e[1]) t[2] = e[0]; else if (t[1] == e[0]) t[2] = e[1]; } if (e[2] >= 0) { // Right int* t = &tris[e[2] * 4]; if (t[0] == -1) { t[0] = e[1]; t[1] = e[0]; } else if (t[0] == e[0]) t[2] = e[1]; else if (t[1] == e[1]) t[2] = e[0]; } } for (int i = 0; i < tris.size() / 4; ++i) { int* t = &tris[i * 4]; if (t[0] == -1 || t[1] == -1 || t[2] == -1) { t[0] = tris[tris.size() - 4]; t[1] = tris[tris.size() - 3]; t[2] = tris[tris.size() - 2]; t[3] = tris[tris.size() - 1]; tris.resize(tris.size() - 4); --i; } } } static unsigned char getEdgeFlags(const dtReal* va, const dtReal* vb, const dtReal* vpoly, const int npoly) { // Return true if edge (va,vb) is part of the polygon. static const dtReal thrSqr = dtSqr(0.001f); for (int i = 0, j = npoly - 1; i < npoly; j = i++) { if (distancePtSeg2d(va, &vpoly[j * 3], &vpoly[i * 3]) < thrSqr && distancePtSeg2d(vb, &vpoly[j * 3], &vpoly[i * 3]) < thrSqr) return 1; } return 0; } static unsigned char getTriFlags(const dtReal* va, const dtReal* vb, const dtReal* vc, const dtReal* vpoly, const int npoly) { unsigned char flags = 0; flags |= getEdgeFlags(va, vb, vpoly, npoly) << 0; flags |= getEdgeFlags(vb, vc, vpoly, npoly) << 2; flags |= getEdgeFlags(vc, va, vpoly, npoly) << 4; return flags; } } inline dtReal getJitterValueX(const int i) { return (((i * 0x8da6b343) & 0xffff) / dtReal(65535.) * 2.0f) - 1.0f; } inline dtReal getJitterValueY(const int i) { return (((i * 0xd8163841) & 0xffff) / dtReal(65535.) * 2.0f) - 1.0f; } static bool buildLayerPolyDetail(const dtReal* in, const int nin, const dtReal cs, const dtReal ch, const dtReal sampleDist, const dtReal sampleMaxError, const dtHeightPatch& hp, dtReal* verts, int& nverts, dtIntArray& tris, dtIntArray& edges, dtIntArray& samples) { static const int MAX_VERTS = 127; static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts). static const int MAX_VERTS_PER_EDGE = 32; dtReal edge[(MAX_VERTS_PER_EDGE+1)*3]; int hull[MAX_VERTS]; int nhull = 0; nverts = 0; for (int i = 0; i < nin; ++i) dtVcopy(&verts[i*3], &in[i*3]); nverts = nin; const dtReal ics = 1.0f/cs; // Tessellate outlines. // This is done in separate pass in order to ensure // seamless height values across the ply boundaries. if (sampleDist > 0) { for (int i = 0, j = nin-1; i < nin; j=i++) { const dtReal* vj = &in[j*3]; const dtReal* vi = &in[i*3]; bool swapped = false; // Make sure the segments are always handled in same order // using lexological sort or else there will be seams. if (dtAbs(vj[0]-vi[0]) < 1e-6f) { if (vj[2] > vi[2]) { dtSwap(vj,vi); swapped = true; } } else { if (vj[0] > vi[0]) { dtSwap(vj,vi); swapped = true; } } // Create samples along the edge. dtReal dx = vi[0] - vj[0]; dtReal dy = vi[1] - vj[1]; dtReal dz = vi[2] - vj[2]; dtReal d = dtSqrt(dx*dx + dz*dz); int nn = 1 + (int)dtFloor(d/sampleDist); if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1; if (nverts+nn >= MAX_VERTS) nn = MAX_VERTS-1-nverts; for (int k = 0; k <= nn; ++k) { dtReal u = (dtReal)k/(dtReal)nn; dtReal* pos = &edge[k*3]; pos[0] = vj[0] + dx*u; pos[1] = vj[1] + dy*u; pos[2] = vj[2] + dz*u; pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, ch, hp)*ch; } // Simplify samples. int idx[MAX_VERTS_PER_EDGE] = {0,nn}; int nidx = 2; for (int k = 0; k < nidx-1; ) { const int a = idx[k]; const int b = idx[k+1]; const dtReal* va = &edge[a*3]; const dtReal* vb = &edge[b*3]; // Find maximum deviation along the segment. dtReal maxd = 0; int maxi = -1; for (int m = a+1; m < b; ++m) { dtReal dev = TileCacheFunc::distancePtSeg(&edge[m * 3], va, vb); if (dev > maxd) { maxd = dev; maxi = m; } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > dtSqr(sampleMaxError)) { for (int m = nidx; m > k; --m) idx[m] = idx[m-1]; idx[k+1] = maxi; nidx++; } else { ++k; } } hull[nhull++] = j; // Add new vertices. if (swapped) { for (int k = nidx-2; k > 0; --k) { dtVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } else { for (int k = 1; k < nidx-1; ++k) { dtVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } } } // Tessellate the base mesh. edges.resize(0); tris.resize(0); TileCacheFunc::delaunayHull(nverts, verts, nhull, hull, tris, edges); if (tris.size() == 0) { // Could not triangulate the poly, make sure there is some valid data there. for (int i = 2; i < nverts; ++i) { tris.push(0); tris.push(i-1); tris.push(i); tris.push(0); } return true; } if (sampleDist > 0) { // Create sample locations in a grid. dtReal bmin[3], bmax[3]; dtVcopy(bmin, in); dtVcopy(bmax, in); for (int i = 1; i < nin; ++i) { dtVmin(bmin, &in[i*3]); dtVmax(bmax, &in[i*3]); } int x0 = (int)dtFloor(bmin[0]/sampleDist); int x1 = (int)dtCeil(bmax[0]/sampleDist); int z0 = (int)dtFloor(bmin[2]/sampleDist); int z1 = (int)dtCeil(bmax[2]/sampleDist); samples.resize(0); for (int z = z0; z < z1; ++z) { for (int x = x0; x < x1; ++x) { dtReal pt[3]; pt[0] = x*sampleDist; pt[1] = (bmax[1]+bmin[1])*0.5f; pt[2] = z*sampleDist; // Make sure the samples are not too close to the edges. if (TileCacheFunc::distToPoly(nin, in, pt) > -sampleDist / 2) continue; samples.push(x); samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, ch, hp)); samples.push(z); samples.push(0); // Not added } } // Add the samples starting from the one that has the most // error. The procedure stops when all samples are added // or when the max error is within treshold. const int nsamples = samples.size()/4; for (int iter = 0; iter < nsamples; ++iter) { if (nverts >= MAX_VERTS) break; // Find sample with most error. dtReal bestpt[3] = {0,0,0}; dtReal bestd = 0; int besti = -1; for (int i = 0; i < nsamples; ++i) { const int* s = &samples[i*4]; if (s[3]) continue; // skip added. dtReal pt[3]; // The sample location is jittered to get rid of some bad triangulations // which are cause by symmetrical data from the grid structure. pt[0] = s[0]*sampleDist + getJitterValueX(i)*cs*0.1f; pt[1] = s[1]*ch; pt[2] = s[2]*sampleDist + getJitterValueY(i)*cs*0.1f; dtReal d = TileCacheFunc::distToTriMesh(pt, verts, nverts, &tris[0], tris.size() / 4); if (d < 0) continue; // did not hit the mesh. if (d > bestd) { bestd = d; besti = i; dtVcopy(bestpt,pt); } } // If the max error is within accepted threshold, stop tesselating. if (bestd <= sampleMaxError || besti == -1) break; // Mark sample as added. samples[besti*4+3] = 1; // Add the new sample point. dtVcopy(&verts[nverts*3],bestpt); nverts++; // Create new triangulation. // TODO: Incremental add instead of full rebuild. edges.resize(0); tris.resize(0); TileCacheFunc::delaunayHull(nverts, verts, nhull, hull, tris, edges); } } const int ntris = tris.size()/4; if (ntris > MAX_TRIS) { tris.resize(MAX_TRIS*4); } return true; } dtStatus dtBuildTileCachePolyMeshDetail(dtTileCacheAlloc* alloc, const dtReal cs, const dtReal ch, const dtReal sampleDist, const dtReal sampleMaxError, dtTileCacheLayer& layer, dtTileCachePolyMesh& lmesh, dtTileCachePolyMeshDetail& dmesh) { dtAssert(alloc); if (lmesh.nverts == 0 || lmesh.npolys == 0) return DT_SUCCESS; const int nvp = lmesh.nvp; const dtReal* orig = layer.header->bmin; dtHeightPatch hp; dtIntArray edges(64); dtIntArray tris(512); dtIntArray stack(512); dtIntArray samples(512); dtReal verts[256*3]; int nPolyVerts = 0; int maxhw = 0, maxhh = 0; dtFixedArray bounds(alloc, lmesh.npolys*4); if (!bounds) { return DT_FAILURE | DT_OUT_OF_MEMORY; } dtFixedArray poly(alloc, nvp*3); if (!poly) { return DT_FAILURE | DT_OUT_OF_MEMORY; } // Find max size for a polygon area. for (int i = 0; i < lmesh.npolys; ++i) { const unsigned short* p = &lmesh.polys[i*nvp*2]; int& xmin = bounds[i*4+0]; int& xmax = bounds[i*4+1]; int& ymin = bounds[i*4+2]; int& ymax = bounds[i*4+3]; xmin = layer.header->width; xmax = 0; ymin = layer.header->height; ymax = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == DT_TILECACHE_NULL_IDX) break; const unsigned short* v = &lmesh.verts[p[j]*3]; xmin = dtMin(xmin, (int)v[0]); xmax = dtMax(xmax, (int)v[0]); ymin = dtMin(ymin, (int)v[2]); ymax = dtMax(ymax, (int)v[2]); nPolyVerts++; } xmin = dtMax(0,xmin-1); xmax = dtMin((int)layer.header->width,xmax+1); ymin = dtMax(0,ymin-1); ymax = dtMin((int)layer.header->height,ymax+1); if (xmin >= xmax || ymin >= ymax) continue; maxhw = dtMax(maxhw, xmax-xmin); maxhh = dtMax(maxhh, ymax-ymin); } hp.data = (unsigned short*)dtAlloc(sizeof(unsigned short)*maxhw*maxhh, DT_ALLOC_TEMP); if (!hp.data) { return DT_FAILURE | DT_OUT_OF_MEMORY; } dmesh.nmeshes = lmesh.npolys; dmesh.nverts = 0; dmesh.ntris = 0; dmesh.meshes = (unsigned int*)alloc->alloc(sizeof(unsigned int)*dmesh.nmeshes*4); if (!dmesh.meshes) { return DT_FAILURE | DT_OUT_OF_MEMORY; } int vcap = nPolyVerts+nPolyVerts/2; int tcap = vcap*2; dmesh.nverts = 0; dmesh.verts = (dtReal*)alloc->alloc(sizeof(dtReal)*vcap*3); if (!dmesh.verts) { return DT_FAILURE | DT_OUT_OF_MEMORY; } dmesh.ntris = 0; dmesh.tris = (unsigned char*)alloc->alloc(sizeof(unsigned char*)*tcap*4); if (!dmesh.tris) { return DT_FAILURE | DT_OUT_OF_MEMORY; } for (int i = 0; i < lmesh.npolys; ++i) { const unsigned short* p = &lmesh.polys[i*nvp*2]; // Store polygon vertices for processing. int npoly = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == DT_TILECACHE_NULL_IDX) break; const unsigned short* v = &lmesh.verts[p[j]*3]; poly[j*3+0] = v[0]*cs; poly[j*3+1] = v[1]*ch; poly[j*3+2] = v[2]*cs; npoly++; } // Get the height data from the area of the polygon. hp.xmin = bounds[i*4+0]; hp.ymin = bounds[i*4+2]; hp.width = bounds[i*4+1]-bounds[i*4+0]; hp.height = bounds[i*4+3]-bounds[i*4+2]; getLayerHeightData(layer, p, lmesh.verts, npoly, hp, stack); // Build detail mesh. int nverts = 0; if (!buildLayerPolyDetail(poly, npoly, cs, ch, sampleDist, sampleMaxError, hp, verts, nverts, tris, edges, samples)) { return DT_FAILURE; } // Move detail verts to world space. for (int j = 0; j < nverts; ++j) { verts[j*3+0] += orig[0]; verts[j*3+1] += orig[1] + ch; // Is this offset necessary? verts[j*3+2] += orig[2]; } // Offset poly too, will be used to flag checking. for (int j = 0; j < npoly; ++j) { poly[j*3+0] += orig[0]; poly[j*3+1] += orig[1]; poly[j*3+2] += orig[2]; } // Store detail submesh. const int ntris = tris.size()/4; dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts; dmesh.meshes[i*4+1] = (unsigned int)nverts; dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris; dmesh.meshes[i*4+3] = (unsigned int)ntris; // Store vertices, allocate more memory if necessary. if (dmesh.nverts+nverts > vcap) { while (dmesh.nverts+nverts > vcap) vcap += 256; dtReal* newv = (dtReal*)alloc->alloc(sizeof(dtReal)*vcap*3); if (!newv) { return DT_FAILURE | DT_OUT_OF_MEMORY; } if (dmesh.nverts) { memcpy(newv, dmesh.verts, sizeof(dtReal)*3*dmesh.nverts); } alloc->free(dmesh.verts); dmesh.verts = newv; } for (int j = 0; j < nverts; ++j) { dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0]; dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1]; dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2]; dmesh.nverts++; } // Store triangles, allocate more memory if necessary. if (dmesh.ntris+ntris > tcap) { while (dmesh.ntris+ntris > tcap) tcap += 256; unsigned char* newt = (unsigned char*)alloc->alloc(sizeof(unsigned char)*tcap*4); if (!newt) { return DT_FAILURE | DT_OUT_OF_MEMORY; } if (dmesh.ntris) { memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris); } alloc->free(dmesh.tris); dmesh.tris = newt; } for (int j = 0; j < ntris; ++j) { const int* t = &tris[j*4]; dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0]; dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1]; dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2]; dmesh.tris[dmesh.ntris*4+3] = TileCacheFunc::getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly); dmesh.ntris++; } } return DT_SUCCESS; }