// Copyright Epic Games, Inc. All Rights Reserved. #include "BSPOps.h" #include "EngineDefines.h" #include "Model.h" #include "MaterialDomain.h" #include "Materials/Material.h" #include "Engine/BrushBuilder.h" #include "Editor/EditorEngine.h" #include "Components/BrushComponent.h" #include "GameFramework/Volume.h" DEFINE_LOG_CATEGORY_STATIC(LogBSPOps, Log, All); /** Errors encountered in Csg operation. */ int32 FBSPOps::GErrors = 0; bool FBSPOps::GFastRebuild = false; FBspPointsGrid* FBspPointsGrid::GBspPoints = nullptr; FBspPointsGrid* FBspPointsGrid::GBspVectors = nullptr; static void TagReferencedNodes( UModel *Model, int32 *NodeRef, int32 *PolyRef, int32 iNode ) { FBspNode &Node = Model->Nodes[iNode]; NodeRef[iNode ] = 0; PolyRef[Node.iSurf] = 0; if( Node.iFront != INDEX_NONE ) TagReferencedNodes(Model,NodeRef,PolyRef,Node.iFront); if( Node.iBack != INDEX_NONE ) TagReferencedNodes(Model,NodeRef,PolyRef,Node.iBack ); if( Node.iPlane != INDEX_NONE ) TagReferencedNodes(Model,NodeRef,PolyRef,Node.iPlane); } // // Update a bounding volume by expanding it to enclose a list of polys. // static void UpdateBoundWithPolys( FBox& Bound, FPoly** PolyList, int32 nPolys ) { for( int32 i=0; iVertices.Num(); j++ ) Bound += (FVector)PolyList[i]->Vertices[j]; } // // Update a convolution hull with a list of polys. // static void UpdateConvolutionWithPolys( UModel *Model, int32 iNode, FPoly **PolyList, int32 nPolys ) { FBox Box(ForceInit); FBspNode &Node = Model->Nodes[iNode]; Node.iCollisionBound = Model->LeafHulls.Num(); for( int32 i=0; iiBrushPoly != INDEX_NONE ) { int32 j; for( j=0; jiBrushPoly == PolyList[i]->iBrushPoly ) break; if( j >= i ) Model->LeafHulls.Add(PolyList[i]->iBrushPoly); } for( int32 j=0; jVertices.Num(); j++ ) Box += (FVector)PolyList[i]->Vertices[j]; } Model->LeafHulls.Add(INDEX_NONE); // Add bounds. Model->LeafHulls.Add( *(int32*)&Box.Min.X ); Model->LeafHulls.Add( *(int32*)&Box.Min.Y ); Model->LeafHulls.Add( *(int32*)&Box.Min.Z ); Model->LeafHulls.Add( *(int32*)&Box.Max.X ); Model->LeafHulls.Add( *(int32*)&Box.Max.Y ); Model->LeafHulls.Add( *(int32*)&Box.Max.Z ); } // // Cut a partitioning poly by a list of polys, and add the resulting inside pieces to the // front list and back list. // static void SplitPartitioner ( UModel* Model, FPoly** PolyList, FPoly** FrontList, FPoly** BackList, int32 n, int32 nPolys, int32& nFront, int32& nBack, FPoly InfiniteEdPoly, TArray& AllocatedFPolys ) { FPoly FrontPoly,BackPoly; while( n < nPolys ) { FPoly* Poly = PolyList[n]; switch( InfiniteEdPoly.SplitWithPlane(Poly->Vertices[0],Poly->Normal,&FrontPoly,&BackPoly,0) ) { case SP_Coplanar: // May occasionally happen. // UE_LOG(LogBSPOps, Log, TEXT("FilterBound: Got inficoplanar") ); break; case SP_Front: // Shouldn't happen if hull is correct. // UE_LOG(LogBSPOps, Log, TEXT("FilterBound: Got infifront") ); return; case SP_Split: InfiniteEdPoly = BackPoly; break; case SP_Back: break; } n++; } FPoly* New = new FPoly; *New = InfiniteEdPoly; New->Reverse(); New->iBrushPoly |= 0x40000000; FrontList[nFront++] = New; AllocatedFPolys.Add( New ); New = new FPoly; *New = InfiniteEdPoly; BackList[nBack++] = New; AllocatedFPolys.Add( New ); } // // Build an FPoly representing an "infinite" plane (which exceeds the maximum // dimensions of the world in all directions) for a particular Bsp node. // FPoly FBSPOps::BuildInfiniteFPoly( UModel* Model, int32 iNode ) { FBspNode &Node = Model->Nodes [iNode ]; FBspSurf &Poly = Model->Surfs [Node.iSurf ]; FVector Base = FVector(Poly.Plane * Poly.Plane.W); FVector Normal = (FVector)Poly.Plane; FVector Axis1,Axis2; // Find two non-problematic axis vectors. Normal.FindBestAxisVectors( Axis1, Axis2 ); // Set up the FPoly. FPoly EdPoly; EdPoly.Init(); EdPoly.Normal = (FVector3f)Normal; EdPoly.Base = (FVector3f)Base; EdPoly.Vertices.Emplace(Base + Axis1*UE_OLD_WORLD_MAX + Axis2*UE_OLD_WORLD_MAX); EdPoly.Vertices.Emplace(Base - Axis1*UE_OLD_WORLD_MAX + Axis2*UE_OLD_WORLD_MAX); EdPoly.Vertices.Emplace(Base - Axis1*UE_OLD_WORLD_MAX - Axis2*UE_OLD_WORLD_MAX); EdPoly.Vertices.Emplace(Base + Axis1*UE_OLD_WORLD_MAX - Axis2*UE_OLD_WORLD_MAX); return EdPoly; } // // Recursively filter a set of polys defining a convex hull down the Bsp, // splitting it into two halves at each node and adding in the appropriate // face polys at splits. // static void FilterBound ( UModel* Model, FBox* ParentBound, int32 iNode, FPoly** PolyList, int32 nPolys, int32 Outside ) { FMemMark Mark(FMemStack::Get()); FBspNode& Node = Model->Nodes [iNode]; FBspSurf& Surf = Model->Surfs [Node.iSurf]; FVector3f Base = Surf.Plane * Surf.Plane.W; FVector3f& Normal = Model->Vectors[Surf.vNormal]; FBox Bound(ForceInit); Bound.Min.X = Bound.Min.Y = Bound.Min.Z = +UE_OLD_WORLD_MAX; // LWC_TODO: Should be HALF_WORLD_MAX Bound.Max.X = Bound.Max.Y = Bound.Max.Z = -UE_OLD_WORLD_MAX; // Split bound into front half and back half. FPoly** FrontList = new(FMemStack::Get(),nPolys*2+16)FPoly*; int32 nFront=0; FPoly** BackList = new(FMemStack::Get(),nPolys*2+16)FPoly*; int32 nBack=0; // Keeping track of allocated FPoly structures to delete later on. TArray AllocatedFPolys; FPoly* FrontPoly = new FPoly; FPoly* BackPoly = new FPoly; // Keep track of allocations. AllocatedFPolys.Add( FrontPoly ); AllocatedFPolys.Add( BackPoly ); for( int32 i=0; iSplitWithPlane( Base, Normal, FrontPoly, BackPoly, 0 ) ) { case SP_Coplanar: // UE_LOG(LogBSPOps, Log, TEXT("FilterBound: Got coplanar") ); FrontList[nFront++] = Poly; BackList[nBack++] = Poly; break; case SP_Front: FrontList[nFront++] = Poly; break; case SP_Back: BackList[nBack++] = Poly; break; case SP_Split: FrontList[nFront++] = FrontPoly; BackList [nBack++] = BackPoly; FrontPoly = new FPoly; BackPoly = new FPoly; // Keep track of allocations. AllocatedFPolys.Add( FrontPoly ); AllocatedFPolys.Add( BackPoly ); break; default: UE_LOG(LogBSPOps, Fatal, TEXT("FZoneFilter::FilterToLeaf: Unknown split code") ); } } if( nFront && nBack ) { // Add partitioner plane to front and back. FPoly InfiniteEdPoly = FBSPOps::BuildInfiniteFPoly( Model, iNode ); InfiniteEdPoly.iBrushPoly = iNode; SplitPartitioner(Model,PolyList,FrontList,BackList,0,nPolys,nFront,nBack,InfiniteEdPoly,AllocatedFPolys); } else { // if( !nFront ) UE_LOG(LogBSPOps, Log, TEXT("FilterBound: Empty fronthull") ); // if( !nBack ) UE_LOG(LogBSPOps, Log, TEXT("FilterBound: Empty backhull") ); } // Recursively update all our childrens' bounding volumes. if( nFront > 0 ) { if( Node.iFront != INDEX_NONE ) FilterBound( Model, &Bound, Node.iFront, FrontList, nFront, Outside || Node.IsCsg() ); else if( Outside || Node.IsCsg() ) UpdateBoundWithPolys( Bound, FrontList, nFront ); else UpdateConvolutionWithPolys( Model, iNode, FrontList, nFront ); } if( nBack > 0 ) { if( Node.iBack != INDEX_NONE) FilterBound( Model, &Bound,Node.iBack, BackList, nBack, Outside && !Node.IsCsg() ); else if( Outside && !Node.IsCsg() ) UpdateBoundWithPolys( Bound, BackList, nBack ); else UpdateConvolutionWithPolys( Model, iNode, BackList, nBack ); } // Update parent bound to enclose this bound. if( ParentBound ) *ParentBound += Bound; // Delete FPolys allocated above. We cannot use FMemStack::Get() for FPoly as the array data FPoly contains will be allocated in regular memory. for( int32 i=0; i0); // No need to test if only one poly. if( NumPolys==1 ) return PolyList[0]; FPoly *Poly, *Best=NULL; float Score, BestScore; int32 i, Index, j, Inc; int32 Splits, Front, Back, Coplanar, AllSemiSolids; //PortalBias -- added by Legend on 4/12/2000 float PortalBias = InPortalBias / 100.0f; Balance &= 0xFF; // keep only the low byte to recover "Balance" //UE_LOG(LogBSPOps, Log, TEXT("Balance=%d PortalBias=%f"), Balance, PortalBias ); if (Opt==FBSPOps::BSP_Optimal) Inc = 1; // Test lots of nodes. else if (Opt==FBSPOps::BSP_Good) Inc = FMath::Max(1,NumPolys/20); // Test 20 nodes. else /* BSP_Lame */ Inc = FMath::Max(1,NumPolys/4); // Test 4 nodes. // See if there are any non-semisolid polygons here. for( i=0; iPolyFlags & PF_AddLast) ) break; AllSemiSolids = (i>=NumPolys); // Search through all polygons in the pool and find: // A. The number of splits each poly would make. // B. The number of front and back nodes the polygon would create. // C. Number of coplanars. BestScore = 0; for( i=0; iPolyFlags & PF_AddLast) && !(Poly->PolyFlags & PF_Portal) ) && !AllSemiSolids ); if( Index>=i+Inc || Index>=NumPolys ) continue; for( j=0; jSplitWithPlaneFast( FPlane( (FVector)Poly->Vertices[0], (FVector)Poly->Normal), NULL, NULL ) ) { case SP_Coplanar: Coplanar++; break; case SP_Front: Front++; break; case SP_Back: Back++; break; case SP_Split: // Disfavor splitting polys that are zone portals. if( !(OtherPoly->PolyFlags & PF_Portal) ) Splits++; else Splits += 16; break; } } // added by Legend 1/31/1999 // Score optimization: minimize cuts vs. balance tree (as specified in BSP Rebuilder dialog) Score = static_cast(( 100.0 - float(Balance) ) * Splits + float(Balance) * FMath::Abs( Front - Back )); if( Poly->PolyFlags & PF_Portal ) { // PortalBias -- added by Legend on 4/12/2000 // // PortalBias enables level designers to control the effect of Portals on the BSP. // This effect can range from 0.0 (ignore portals), to 1.0 (portals cut everything). // // In builds prior to this (since the 221 build dating back to 1/31/1999) the bias // has been 1.0 causing the portals to cut the BSP in ways that will potentially // degrade level performance, and increase the BSP complexity. // // By setting the bias to a value between 0.3 and 0.7 the positive effects of // the portals are preserved without giving them unreasonable priority in the BSP. // // Portals should be weighted high enough in the BSP to separate major parts of the // level from each other (pushing entire rooms down the branches of the BSP), but // should not be so high that portals cut through adjacent geometry in a way that // increases complexity of the room being (typically, accidentally) cut. // Score -= static_cast(( 100.0 - float(Balance) ) * Splits * PortalBias); // ignore PortalBias of the split polys -- bias toward portal selection for cutting planes! } //UE_LOG(LogBSPOps, Log, " %4d: Score = %f (Front = %4d, Back = %4d, Splits = %4d, Flags = %08X)", Index, Score, Front, Back, Splits, Poly->PolyFlags ); //LEC if( Score AllocatedFPolys; // To account for big EdPolys split up. int32 NumPolysToAlloc = NumPolys + 8 + NumPolys/4; int32 NumFront=0; FPoly **FrontList = new(FMemStack::Get(),NumPolysToAlloc)FPoly*; int32 NumBack =0; FPoly **BackList = new(FMemStack::Get(),NumPolysToAlloc)FPoly*; FPoly *SplitPoly = FindBestSplit( NumPolys, PolyList, Opt, Balance, PortalBias ); // Add the splitter poly to the Bsp with either a new BspSurf or an existing one. if( RebuildSimplePolys ) { SplitPoly->iLinkSurf = Model->Surfs.Num(); } int32 iOurNode = bspAddNode(Model,iParent,NodePlace,0,SplitPoly); int32 iPlaneNode = iOurNode; // Now divide all polygons in the pool into (A) polygons that are // in front of Poly, and (B) polygons that are in back of Poly. // Coplanar polys are inserted immediately, before recursing. // If any polygons are split by Poly, we ignrore the original poly, // split it into two polys, and add two new polys to the pool. FPoly *FrontEdPoly = new FPoly; FPoly *BackEdPoly = new FPoly; // Keep track of allocations. AllocatedFPolys.Add( FrontEdPoly ); AllocatedFPolys.Add( BackEdPoly ); for( int32 i=0; iSplitWithPlane( SplitPoly->Vertices[0], SplitPoly->Normal, FrontEdPoly, BackEdPoly, 0 ) ) { case SP_Coplanar: if( RebuildSimplePolys ) { EdPoly->iLinkSurf = Model->Surfs.Num()-1; } iPlaneNode = bspAddNode( Model, iPlaneNode, NODE_Plane, 0, EdPoly ); break; case SP_Front: FrontList[NumFront++] = PolyList[i]; break; case SP_Back: BackList[NumBack++] = PolyList[i]; break; case SP_Split: // Create front & back nodes. FrontList[NumFront++] = FrontEdPoly; BackList [NumBack ++] = BackEdPoly; FrontEdPoly = new FPoly; BackEdPoly = new FPoly; // Keep track of allocations. AllocatedFPolys.Add( FrontEdPoly ); AllocatedFPolys.Add( BackEdPoly ); break; } } // Recursively split the front and back pools. if( NumFront > 0 ) SplitPolyList( Model, iOurNode, NODE_Front, NumFront, FrontList, Opt, Balance, PortalBias, RebuildSimplePolys ); if( NumBack > 0 ) SplitPolyList( Model, iOurNode, NODE_Back, NumBack, BackList, Opt, Balance, PortalBias, RebuildSimplePolys ); // Delete FPolys allocated above. We cannot use FMemStack::Get() for FPoly as the array data FPoly contains will be allocated in regular memory. for( int32 i=0; iGetName() ); // moved here so that we can easily debug when an actor has lost parts of its brush check(Actor->GetBrushComponent()); check(Actor->Brush); check(Actor->Brush->RootOutside); RebuildBrush(Actor->Brush); // Make sure simplified collision is up to date. Actor->GetBrushComponent()->BuildSimpleBrushCollision(); Actor->RebuildNavigationData(); } /** * Duplicates the specified brush and makes it into a CSG-able level brush. * @return The new brush, or NULL if the original was empty. */ void FBSPOps::csgCopyBrush( ABrush* Dest, ABrush* Src, uint32 PolyFlags, EObjectFlags ResFlags, bool bNeedsPrep, bool bCopyPosRotScale, bool bAllowEmpty ) { check(Src); check(Src->GetBrushComponent()); check(Src->Brush); // Handle empty brush. if( !bAllowEmpty && !Src->Brush->Polys->Element.Num() ) { Dest->Brush = NULL; Dest->GetBrushComponent()->Brush = NULL; return; } // Duplicate the brush and its polys. Dest->PolyFlags = PolyFlags; Dest->Brush = NewObject(Dest, NAME_None, ResFlags); Dest->Brush->Initialize(nullptr, Src->Brush->RootOutside); Dest->Brush->Polys = NewObject(Dest->Brush, NAME_None, ResFlags); Dest->Brush->Polys->Element = Src->Brush->Polys->Element; Dest->GetBrushComponent()->Brush = Dest->Brush; if(Src->BrushBuilder != nullptr) { Dest->BrushBuilder = DuplicateObject(Src->BrushBuilder, Dest); } // Update poly textures. for( int32 i=0; iBrush->Polys->Element.Num(); i++ ) { Dest->Brush->Polys->Element[i].iBrushPoly = INDEX_NONE; } // Copy positioning, and build bounding box. if(bCopyPosRotScale) { Dest->CopyPosRotScaleFrom( Src ); } // If it's a moving brush, prep it. if( bNeedsPrep ) { csgPrepMovingBrush( Dest ); } } /** * Adds a brush to the list of CSG brushes in the level, using a CSG operation. * * @return A newly-created copy of the brush. */ ABrush* FBSPOps::csgAddOperation( ABrush* Actor, uint32 PolyFlags, EBrushType BrushType) { check(Actor); check(Actor->GetBrushComponent()); check(Actor->Brush); check(Actor->Brush->Polys); check(Actor->GetWorld()); // Can't do this if brush has no polys. if( !Actor->Brush->Polys->Element.Num() ) return NULL; // Spawn a new actor for the brush. ABrush* Result = Actor->GetWorld()->SpawnBrush(); Result->SetNotForClientOrServer(); // Duplicate the brush. csgCopyBrush ( Result, Actor, PolyFlags, RF_Transactional, 0, true ); check(Result->Brush); // Assign the default material to the brush's polys. for( int32 i=0; iBrush->Polys->Element.Num(); i++ ) { FPoly& CurrentPoly = Result->Brush->Polys->Element[i]; if ( !CurrentPoly.Material ) { CurrentPoly.Material = UMaterial::GetDefaultMaterial(MD_Surface); } } // Set add-info. Result->BrushType = BrushType; Result->ReregisterAllComponents(); return Result; } /** Add a new point to the model (preventing duplicates) and return its index. */ static int32 AddThing( TArray& Vectors, const FVector3f& V, float Thresh, int32 Check ) { if( Check ) { // See if this is very close to an existing point/vector. for( int32 i=0; i -Thresh) && (Temp < Thresh) ) { Temp=(V.Y - TableVect.Y); if( (Temp > -Thresh) && (Temp < Thresh) ) { Temp=(V.Z - TableVect.Z); if( (Temp > -Thresh) && (Temp < Thresh) ) { // Found nearly-matching vector. return i; } } } } } return Vectors.Add( V ); } /** Add a new vector to the model, merging near-duplicates, and return its index. */ int32 FBSPOps::bspAddVector( UModel* Model, const FVector* V, bool Exact ) { const float Thresh = Exact ? THRESH_NORMALS_ARE_SAME : THRESH_VECTORS_ARE_NEAR; if (FBspPointsGrid::GBspVectors) { // If a points grid has been built for quick vector lookup, use that instead of doing a linear search const int32 NextIndex = Model->Vectors.Num(); const int32 ReturnedIndex = FBspPointsGrid::GBspVectors->FindOrAddPoint(*V, NextIndex, Thresh); if (ReturnedIndex == NextIndex) { Model->Vectors.Add((FVector3f)*V); } return ReturnedIndex; } return AddThing ( Model->Vectors, (FVector3f)*V, Exact ? THRESH_NORMALS_ARE_SAME : THRESH_VECTORS_ARE_NEAR, 1 ); } /** Add a new point to the model, merging near-duplicates, and return its index. */ int32 FBSPOps::bspAddPoint( UModel* Model, const FVector* V, bool Exact ) { const float Thresh = Exact ? THRESH_POINTS_ARE_SAME : THRESH_POINTS_ARE_NEAR; if (FBspPointsGrid::GBspPoints) { // If a points grid has been built for quick point lookup, use that instead of doing a linear search const int32 NextIndex = Model->Points.Num(); // Always look for points with a low threshold; a generous threshold can result in 'leaks' in the BSP and unwanted polys being generated const int32 ReturnedIndex = FBspPointsGrid::GBspPoints->FindOrAddPoint(*V, NextIndex, THRESH_POINTS_ARE_SAME); if (ReturnedIndex == NextIndex) { Model->Points.Add((FVector3f)*V); } return ReturnedIndex; } // Try to find a match quickly from the Bsp. This finds all potential matches // except for any dissociated from nodes/surfaces during a rebuild. FVector3f Temp; int32 pVertex; float NearestDist = Model->FindNearestVertex((FVector3f)*V,Temp,Thresh,pVertex); if( (NearestDist >= 0.0) && (NearestDist <= Thresh) ) { // Found an existing point. return pVertex; } else { // No match found; add it slowly to find duplicates. return AddThing(Model->Points, (FVector3f)*V, Thresh, !GFastRebuild); } } /** * Builds Bsp from the editor polygon set (EdPolys) of a model. * * Opt = Bsp optimization, BSP_Lame (fast), BSP_Good (medium), BSP_Optimal (slow) * Balance = 0-100, 0=only worry about minimizing splits, 100=only balance tree. */ void FBSPOps::bspBuild( UModel* Model, enum EBspOptimization Opt, int32 Balance, int32 PortalBias, int32 RebuildSimplePolys, int32 iNode ) { int32 OriginalPolys = Model->Polys->Element.Num(); // Empty the model's tables. if( RebuildSimplePolys==1 ) { // Empty everything but polys. Model->EmptyModel( 1, 0 ); } else if( RebuildSimplePolys==0 ) { // Empty node vertices. for( int32 i=0; iNodes.Num(); i++ ) Model->Nodes[i].NumVertices = 0; // Refresh the Bsp. bspRefresh(Model,1); // Empty nodes. Model->EmptyModel( 0, 0 ); } if( Model->Polys->Element.Num() ) { // Allocate polygon pool. FMemMark Mark(FMemStack::Get()); FPoly** PolyList = new( FMemStack::Get(), Model->Polys->Element.Num() )FPoly*; // Add all FPolys to active list. for( int32 i=0; iPolys->Element.Num(); i++ ) if( Model->Polys->Element[i].Vertices.Num() ) PolyList[i] = &Model->Polys->Element[i]; // Now split the entire Bsp by splitting the list of all polygons. SplitPolyList ( Model, INDEX_NONE, NODE_Root, Model->Polys->Element.Num(), PolyList, Opt, Balance, PortalBias, RebuildSimplePolys ); // Now build the bounding boxes for all nodes. if( RebuildSimplePolys==0 ) { // Remove unreferenced things. bspRefresh( Model, 1 ); // Rebuild all bounding boxes. bspBuildBounds( Model ); } Mark.Pop(); } // UE_LOG(LogBSPOps, Log, TEXT("bspBuild built %i convex polys into %i nodes"), OriginalPolys, Model->Nodes.Num() ); } /** * If the Bsp's point and vector tables are nearly full, reorder them and delete unused ones. */ void FBSPOps::bspRefresh( UModel* Model, bool NoRemapSurfs ) { FMemStack& MemStack = FMemStack::Get(); FMemMark Mark(MemStack); int32 NumNodes = Model->Nodes.Num(); int32 NumSurfs = Model->Surfs.Num(); int32 NumVectors = Model->Vectors.Num(); int32 NumPoints = Model->Points.Num(); // Remove unreferenced Bsp surfs. int32* PolyRef; if( NoRemapSurfs ) { PolyRef = NewZeroed(MemStack, NumSurfs); } else { PolyRef = NewOned(MemStack, NumSurfs); } int32* NodeRef = NewOned(MemStack, NumNodes); if( NumNodes > 0 ) { TagReferencedNodes( Model, NodeRef, PolyRef, 0 ); } // Remap Bsp surfs. { int32 n=0; for( int32 i=0; iSurfs[n] = Model->Surfs[i]; PolyRef[i]=n++; } } //UE_LOG(LogBSPOps, Log, TEXT("Polys: %i -> %i"), NumSurfs, n ); Model->Surfs.RemoveAt( n, NumSurfs-n ); NumSurfs = n; } // Remap Bsp nodes. { int32 n=0; for( int32 i=0; iNodes[n] = Model->Nodes[i]; NodeRef[i]=n++; } } //UE_LOG(LogBSPOps, Log, TEXT("Nodes: %i -> %i"), NumNodes, n ); Model->Nodes.RemoveAt( n, NumNodes-n ); NumNodes = n; } // Update Bsp nodes. for( int32 i=0; iNodes[i]; Node->iSurf = PolyRef[Node->iSurf]; if (Node->iFront != INDEX_NONE) Node->iFront = NodeRef[Node->iFront]; if (Node->iBack != INDEX_NONE) Node->iBack = NodeRef[Node->iBack]; if (Node->iPlane != INDEX_NONE) Node->iPlane = NodeRef[Node->iPlane]; } // Remove unreferenced points and vectors. int32* VectorRef = NewOned(MemStack, NumVectors); int32* PointRef = NewOned(MemStack, NumPoints); // Check Bsp surfs. TArray VertexRef; for( int32 i=0; iSurfs[i]; VectorRef [Surf->vNormal ] = 0; VectorRef [Surf->vTextureU ] = 0; VectorRef [Surf->vTextureV ] = 0; PointRef [Surf->pBase ] = 0; } // Check Bsp nodes. for( int32 i=0; iNodes[i]; FVert* VertPool = &Model->Verts[Node->iVertPool]; for( int B=0; BNumVertices; B++ ) { PointRef[VertPool->pVertex] = 0; VertPool++; } } // Remap points. { int32 n=0; for( int32 i=0; iPoints[n] = Model->Points[i]; PointRef[i] = n++; } //UE_LOG(LogBSPOps, Log, TEXT("Points: %i -> %i"), NumPoints, n ); Model->Points.RemoveAt( n, NumPoints-n ); NumPoints = n; } // Remap vectors. { int32 n=0; for (int32 i=0; iVectors[n] = Model->Vectors[i]; VectorRef[i] = n++; } //UE_LOG(LogBSPOps, Log, TEXT("Vectors: %i -> %i"), NumVectors, n ); Model->Vectors.RemoveAt( n, NumVectors-n ); NumVectors = n; } // Update Bsp surfs. for( int32 i=0; iSurfs[i]; Surf->vNormal = VectorRef [Surf->vNormal ]; Surf->vTextureU = VectorRef [Surf->vTextureU]; Surf->vTextureV = VectorRef [Surf->vTextureV]; Surf->pBase = PointRef [Surf->pBase ]; } // Update Bsp nodes. for( int32 i=0; iNodes[i]; FVert* VertPool = &Model->Verts[Node->iVertPool]; for( int B=0; BNumVertices; B++ ) { VertPool->pVertex = PointRef [VertPool->pVertex]; VertPool++; } } // Shrink the objects. Model->ShrinkModel(); Mark.Pop(); } // Build bounding volumes for all Bsp nodes. The bounding volume of the node // completely encloses the "outside" space occupied by the nodes. Note that // this is not the same as representing the bounding volume of all of the // polygons within the node. // // We start with a practically-infinite cube and filter it down the Bsp, // whittling it away until all of its convex volume fragments land in leaves. void FBSPOps::bspBuildBounds( UModel* Model ) { if( Model->Nodes.Num()==0 ) return; FPoly Polys[6], *PolyList[6]; for( int32 i=0; i<6; i++ ) { PolyList[i] = &Polys[i]; PolyList[i]->Init(); PolyList[i]->iBrushPoly = INDEX_NONE; } Polys[0].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX,HALF_WORLD_MAX); Polys[0].Vertices.Emplace( HALF_WORLD_MAX,-HALF_WORLD_MAX,HALF_WORLD_MAX); Polys[0].Vertices.Emplace( HALF_WORLD_MAX, HALF_WORLD_MAX,HALF_WORLD_MAX); Polys[0].Vertices.Emplace(-HALF_WORLD_MAX, HALF_WORLD_MAX,HALF_WORLD_MAX); Polys[0].Normal =FVector3f( 0.000000, 0.000000, 1.000000 ); Polys[0].Base =Polys[0].Vertices[0]; Polys[1].Vertices.Emplace(-HALF_WORLD_MAX, HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[1].Vertices.Emplace( HALF_WORLD_MAX, HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[1].Vertices.Emplace( HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[1].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[1].Normal =FVector3f( 0.000000, 0.000000, -1.000000 ); Polys[1].Base =Polys[1].Vertices[0]; Polys[2].Vertices.Emplace(-HALF_WORLD_MAX,HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[2].Vertices.Emplace(-HALF_WORLD_MAX,HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[2].Vertices.Emplace( HALF_WORLD_MAX,HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[2].Vertices.Emplace( HALF_WORLD_MAX,HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[2].Normal =FVector3f( 0.000000, 1.000000, 0.000000 ); Polys[2].Base =Polys[2].Vertices[0]; Polys[3].Vertices.Emplace( HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[3].Vertices.Emplace( HALF_WORLD_MAX,-HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[3].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[3].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[3].Normal =FVector3f( 0.000000, -1.000000, 0.000000 ); Polys[3].Base =Polys[3].Vertices[0]; Polys[4].Vertices.Emplace(HALF_WORLD_MAX, HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[4].Vertices.Emplace(HALF_WORLD_MAX, HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[4].Vertices.Emplace(HALF_WORLD_MAX,-HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[4].Vertices.Emplace(HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[4].Normal =FVector3f( 1.000000, 0.000000, 0.000000 ); Polys[4].Base =Polys[4].Vertices[0]; Polys[5].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[5].Vertices.Emplace(-HALF_WORLD_MAX,-HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[5].Vertices.Emplace(-HALF_WORLD_MAX, HALF_WORLD_MAX, HALF_WORLD_MAX); Polys[5].Vertices.Emplace(-HALF_WORLD_MAX, HALF_WORLD_MAX,-HALF_WORLD_MAX); Polys[5].Normal =FVector3f(-1.000000, 0.000000, 0.000000 ); Polys[5].Base =Polys[5].Vertices[0]; // Empty hulls. Model->LeafHulls.Empty(); for( int32 i=0; iNodes.Num(); i++ ) Model->Nodes[i].iCollisionBound = INDEX_NONE; FilterBound( Model, NULL, 0, PolyList, 6, Model->RootOutside ); // UE_LOG(LogBSPOps, Log, TEXT("bspBuildBounds: Generated %i hulls"), Model->LeafHulls.Num() ); } /** * Validate a brush, and set iLinks on all EdPolys to index of the * first identical EdPoly in the list, or its index if it's the first. * Not transactional. */ void FBSPOps::bspValidateBrush( UModel* Brush, bool ForceValidate, bool DoStatusUpdate ) { check(Brush != nullptr); Brush->Modify(false); if( ForceValidate || !Brush->Linked ) { Brush->Linked = 1; for( int32 i=0; iPolys->Element.Num(); i++ ) { Brush->Polys->Element[i].iLink = i; } int32 n=0; for( int32 i=0; iPolys->Element.Num(); i++ ) { FPoly* EdPoly = &Brush->Polys->Element[i]; if( EdPoly->iLink==i ) { for( int32 j=i+1; jPolys->Element.Num(); j++ ) { FPoly* OtherPoly = &Brush->Polys->Element[j]; if ( OtherPoly->iLink == j && OtherPoly->Material == EdPoly->Material && OtherPoly->TextureU == EdPoly->TextureU && OtherPoly->TextureV == EdPoly->TextureV && OtherPoly->PolyFlags == EdPoly->PolyFlags && (OtherPoly->Normal | EdPoly->Normal)>0.9999 ) { float Dist = FVector3f::PointPlaneDist( OtherPoly->Vertices[0], EdPoly->Vertices[0], EdPoly->Normal ); if( Dist>-0.001 && Dist<0.001 ) { OtherPoly->iLink = i; n++; } } } } } // UE_LOG(LogBSPOps, Log, TEXT("BspValidateBrush linked %i of %i polys"), n, Brush->Polys->Element.Num() ); } // Build bounds. Brush->BuildBound(); } void FBSPOps::bspUnlinkPolys( UModel* Brush ) { Brush->Modify(false); Brush->Linked = 1; for( int32 i=0; iPolys->Element.Num(); i++ ) { Brush->Polys->Element[i].iLink = i; } } // Add an editor polygon to the Bsp, and also stick a reference to it // in the editor polygon's BspNodes list. If the editor polygon has more sides // than the Bsp will allow, split it up into several sub-polygons. // // Returns: Index to newly-created node of Bsp. If several nodes were created because // of split polys, returns the parent (highest one up in the Bsp). int32 FBSPOps::bspAddNode( UModel* Model, int32 iParent, ENodePlace NodePlace, uint32 NodeFlags, FPoly* EdPoly ) { if( NodePlace == NODE_Plane ) { // Make sure coplanars are added at the end of the coplanar list so that // we don't insert NF_IsNew nodes with non NF_IsNew coplanar children. while( Model->Nodes[iParent].iPlane != INDEX_NONE ) { iParent = Model->Nodes[iParent].iPlane; } } FBspSurf* Surf = NULL; if( EdPoly->iLinkSurf == Model->Surfs.Num() ) { int32 NewIndex = Model->Surfs.AddZeroed(); Surf = &Model->Surfs[NewIndex]; // This node has a new polygon being added by bspBrushCSG; must set its properties here. FVector Base = (FVector)EdPoly->Base; FVector Normal = (FVector)EdPoly->Normal; FVector TextureU = (FVector)EdPoly->TextureU; FVector TextureV = (FVector)EdPoly->TextureV; Surf->pBase = bspAddPoint (Model,&Base,1); Surf->vNormal = bspAddVector (Model,&Normal,1); Surf->vTextureU = bspAddVector (Model,&TextureU,0); Surf->vTextureV = bspAddVector (Model,&TextureV,0); Surf->Material = EdPoly->Material; Surf->Actor = NULL; Surf->PolyFlags = EdPoly->PolyFlags & ~PF_NoAddToBSP; Surf->LightMapScale= EdPoly->LightMapScale; // Find the LightmassPrimitiveSettings in the UModel... int32 FoundLightmassIndex = INDEX_NONE; if (Model->LightmassSettings.Find(EdPoly->LightmassSettings, FoundLightmassIndex) == false) { FoundLightmassIndex = Model->LightmassSettings.Add(EdPoly->LightmassSettings); } Surf->iLightmassIndex = FoundLightmassIndex; Surf->Actor = EdPoly->Actor; Surf->iBrushPoly = EdPoly->iBrushPoly; if (EdPoly->Actor) { Surf->bHiddenEdTemporary = EdPoly->Actor->IsTemporarilyHiddenInEditor(); Surf->bHiddenEdLevel = EdPoly->Actor->bHiddenEdLevel; Surf->bHiddenEdLayer = EdPoly->Actor->bHiddenEdLayer; } Surf->Plane = FPlane4f(EdPoly->Vertices[0],EdPoly->Normal); } else { check(EdPoly->iLinkSurf!=INDEX_NONE); check(EdPoly->iLinkSurfSurfs.Num()); Surf = &Model->Surfs[EdPoly->iLinkSurf]; } // Set NodeFlags. if( Surf->PolyFlags & PF_NotSolid ) NodeFlags |= NF_NotCsg; if( Surf->PolyFlags & (PF_Invisible|PF_Portal) ) NodeFlags |= NF_NotVisBlocking; if( EdPoly->Vertices.Num() > FBspNode::MAX_NODE_VERTICES ) { // Split up into two coplanar sub-polygons (one with MAX_NODE_VERTICES vertices and // one with all the remaining vertices) and recursively add them. // EdPoly1 is just the first MAX_NODE_VERTICES from EdPoly. FMemMark Mark(FMemStack::Get()); FPoly *EdPoly1 = new FPoly; *EdPoly1 = *EdPoly; EdPoly1->Vertices.RemoveAt(FBspNode::MAX_NODE_VERTICES,EdPoly->Vertices.Num() - FBspNode::MAX_NODE_VERTICES); // EdPoly2 is the first vertex from EdPoly, and the last EdPoly->Vertices.Num() - MAX_NODE_VERTICES + 1. FPoly *EdPoly2 = new FPoly; *EdPoly2 = *EdPoly; EdPoly2->Vertices.RemoveAt(1,FBspNode::MAX_NODE_VERTICES - 2); int32 iNode = bspAddNode( Model, iParent, NodePlace, NodeFlags, EdPoly1 ); // Add this poly first. bspAddNode( Model, iNode, NODE_Plane, NodeFlags, EdPoly2 ); // Then add other (may be bigger). delete EdPoly1; delete EdPoly2; Mark.Pop(); return iNode; // Return coplanar "parent" node (not coplanar child) } else { // Add node. int32 iNode = Model->Nodes.AddZeroed(); FBspNode& Node = Model->Nodes[iNode]; // Tell transaction tracking system that parent is about to be modified. FBspNode* Parent=NULL; if( NodePlace!=NODE_Root ) Parent = &Model->Nodes[iParent]; // Set node properties. Node.iSurf = EdPoly->iLinkSurf; Node.NodeFlags = static_cast(NodeFlags); Node.iCollisionBound = INDEX_NONE; Node.Plane = FPlane4f( EdPoly->Vertices[0], EdPoly->Normal ); Node.iVertPool = Model->Verts.AddUninitialized(EdPoly->Vertices.Num()); Node.iFront = INDEX_NONE; Node.iBack = INDEX_NONE; Node.iPlane = INDEX_NONE; if( NodePlace==NODE_Root ) { Node.iLeaf[0] = INDEX_NONE; Node.iLeaf[1] = INDEX_NONE; Node.iZone[0] = 0; Node.iZone[1] = 0; } else if( NodePlace==NODE_Front || NodePlace==NODE_Back ) { int32 ZoneFront=NodePlace==NODE_Front; Node.iLeaf[0] = Parent->iLeaf[ZoneFront]; Node.iLeaf[1] = Parent->iLeaf[ZoneFront]; Node.iZone[0] = Parent->iZone[ZoneFront]; Node.iZone[1] = Parent->iZone[ZoneFront]; } else { int32 IsFlipped = (Node.Plane|Parent->Plane)<0.0; Node.iLeaf[0] = Parent->iLeaf[IsFlipped ]; Node.iLeaf[1] = Parent->iLeaf[1-IsFlipped]; Node.iZone[0] = Parent->iZone[IsFlipped ]; Node.iZone[1] = Parent->iZone[1-IsFlipped]; } // Link parent to this node. if (NodePlace == NODE_Front) { Parent->iFront = iNode; } else if (NodePlace == NODE_Back) { Parent->iBack = iNode; } else if (NodePlace == NODE_Plane) { Parent->iPlane = iNode; } // Add all points to point table, merging nearly-overlapping polygon points // with other points in the poly to prevent criscrossing vertices from // being generated. // Must maintain Node->NumVertices on the fly so that bspAddPoint is always // called with the Bsp in a clean state. Node.NumVertices = 0; FVert* VertPool = &Model->Verts[ Node.iVertPool ]; for( uint8 i=0; iVertices.Num(); i++ ) { FVector Vertex = (FVector)EdPoly->Vertices[i]; int32 pVertex = bspAddPoint(Model,&Vertex,0); if( Node.NumVertices==0 || VertPool[Node.NumVertices-1].pVertex!=pVertex ) { VertPool[Node.NumVertices].iSide = INDEX_NONE; VertPool[Node.NumVertices].pVertex = pVertex; Node.NumVertices++; } } if( Node.NumVertices>=2 && VertPool[0].pVertex==VertPool[Node.NumVertices-1].pVertex ) { Node.NumVertices--; } if( Node.NumVertices < 3 ) { GErrors++; // UE_LOG(LogBSPOps, Warning, TEXT("bspAddNode: Infinitesimal polygon %i (%i)"), Node.NumVertices, EdPoly->Vertices.Num() ); Node.NumVertices = 0; } return iNode; } } /** * Rebuild some brush internals */ void FBSPOps::RebuildBrush(UModel* Brush) { Brush->Modify(false); Brush->EmptyModel(1, 0); // Build bounding box. Brush->BuildBound(); // Build BSP for the brush. bspBuild(Brush, BSP_Good, 15, 70, 1, 0); bspRefresh(Brush, 1); bspBuildBounds(Brush); } /** * Rotates the specified brush's vertices. */ void FBSPOps::RotateBrushVerts(ABrush* Brush, const FRotator& Rotation, bool bClearComponents) { if(Brush->GetBrushComponent()->Brush && Brush->GetBrushComponent()->Brush->Polys) { for( int32 poly = 0 ; poly < Brush->GetBrushComponent()->Brush->Polys->Element.Num() ; poly++ ) { FPoly* Poly = &(Brush->GetBrushComponent()->Brush->Polys->Element[poly]); // Rotate the vertices. const FRotationMatrix RotMatrix( Rotation ); for( int32 vertex = 0 ; vertex < Poly->Vertices.Num() ; vertex++ ) { Poly->Vertices[vertex] = FVector3f(Brush->GetPivotOffset() + (FVector)RotMatrix.TransformVector((FVector)Poly->Vertices[vertex] - Brush->GetPivotOffset())); } Poly->Base = FVector3f(Brush->GetPivotOffset() + (FVector)RotMatrix.TransformVector(FVector(Poly->Base) - Brush->GetPivotOffset())); // Rotate the texture vectors. Poly->TextureU = FVector4f(RotMatrix.TransformVector( (FVector)Poly->TextureU )); Poly->TextureV = FVector4f(RotMatrix.TransformVector( (FVector)Poly->TextureV )); // Recalc the normal for the poly. Poly->Normal = FVector3f::ZeroVector; Poly->Finalize(Brush,0); } Brush->GetBrushComponent()->Brush->BuildBound(); if( !Brush->IsStaticBrush() ) { csgPrepMovingBrush( Brush ); } if ( bClearComponents ) { Brush->ReregisterAllComponents(); } } } void FBSPOps::HandleVolumeShapeChanged(AVolume& Volume) { // The default physics volume doesn't have an associated UModel, so we need to handle that case gracefully. if(Volume.Brush) { FBSPOps::csgPrepMovingBrush( &Volume ); } } void FBspPointsGrid::Clear(int32 InitialSize) { GridMap.Empty(InitialSize); } // Given a grid index in one axis, a real position on the grid and a threshold radius, // return either: // - the additional grid index it can overlap in that axis, or // - the original grid index if there is no overlap. static FORCEINLINE int32 GetAdjacentIndexIfOverlapping(int32 GridIndex, float GridPos, float GridThreshold) { if (GridPos - GridIndex < GridThreshold) { return GridIndex - 1; } else if (1.0f - (GridPos - GridIndex) < GridThreshold) { return GridIndex + 1; } else { return GridIndex; } } int32 FBspPointsGrid::FindOrAddPoint(const FVector& Point, int32 Index, float PointThreshold) { // Offset applied to the grid coordinates so aligned vertices (the normal case) don't overlap several grid items (taking into account the threshold) const float GridOffset = 0.12345f; const float AdjustedPointX = static_cast(Point.X - GridOffset); const float AdjustedPointY = static_cast(Point.Y - GridOffset); const float AdjustedPointZ = static_cast(Point.Z - GridOffset); const float GridX = AdjustedPointX * OneOverGranularity; const float GridY = AdjustedPointY * OneOverGranularity; const float GridZ = AdjustedPointZ * OneOverGranularity; // Get the grid indices corresponding to the point coordinates const int32 GridIndexX = FMath::FloorToInt(GridX); const int32 GridIndexY = FMath::FloorToInt(GridY); const int32 GridIndexZ = FMath::FloorToInt(GridZ); // Find grid item in map FBspPointsGridItem& GridItem = GridMap.FindOrAdd(FBspPointsKey(GridIndexX, GridIndexY, GridIndexZ)); // Iterate through grid item points and return a point if it's close to the threshold const float PointThresholdSquared = PointThreshold * PointThreshold; for (const FBspIndexedPoint& IndexedPoint : GridItem.IndexedPoints) { if (FVector::DistSquared(IndexedPoint.Point, Point) <= PointThresholdSquared) { return IndexedPoint.Index; } } // Otherwise, the point is new: add it to the grid item. GridItem.IndexedPoints.Emplace(Point, Index); // The grid has a maximum threshold of a certain radius. If the point is near the edge of a grid cube, it may overlap into other items. // Add it to all grid items it can be seen from. const float GridThreshold = Threshold * OneOverGranularity; const int32 NeighbourX = GetAdjacentIndexIfOverlapping(GridIndexX, GridX, GridThreshold); const int32 NeighbourY = GetAdjacentIndexIfOverlapping(GridIndexY, GridY, GridThreshold); const int32 NeighbourZ = GetAdjacentIndexIfOverlapping(GridIndexZ, GridZ, GridThreshold); const bool bOverlapsInX = (NeighbourX != GridIndexX); const bool bOverlapsInY = (NeighbourY != GridIndexY); const bool bOverlapsInZ = (NeighbourZ != GridIndexZ); if (bOverlapsInX) { GridMap.FindOrAdd(FBspPointsKey(NeighbourX, GridIndexY, GridIndexZ)).IndexedPoints.Emplace(Point, Index); if (bOverlapsInY) { GridMap.FindOrAdd(FBspPointsKey(NeighbourX, NeighbourY, GridIndexZ)).IndexedPoints.Emplace(Point, Index); if (bOverlapsInZ) { GridMap.FindOrAdd(FBspPointsKey(NeighbourX, NeighbourY, NeighbourZ)).IndexedPoints.Emplace(Point, Index); } } else if (bOverlapsInZ) { GridMap.FindOrAdd(FBspPointsKey(NeighbourX, GridIndexY, NeighbourZ)).IndexedPoints.Emplace(Point, Index); } } else { if (bOverlapsInY) { GridMap.FindOrAdd(FBspPointsKey(GridIndexX, NeighbourY, GridIndexZ)).IndexedPoints.Emplace(Point, Index); if (bOverlapsInZ) { GridMap.FindOrAdd(FBspPointsKey(GridIndexX, NeighbourY, NeighbourZ)).IndexedPoints.Emplace(Point, Index); } } else if (bOverlapsInZ) { GridMap.FindOrAdd(FBspPointsKey(GridIndexX, GridIndexY, NeighbourZ)).IndexedPoints.Emplace(Point, Index); } } return Index; }