// Copyright Epic Games, Inc. All Rights Reserved. /*============================================================================================= PathTracingDefaultLit.usf: Path tracing BRDF model for default lit material ===============================================================================================*/ #pragma once #include "PathTracingMaterialCommon.ush" #include "PathTracingFresnel.ush" #include "PathTracingEnergyConservation.ush" struct FDefaultLitData { float3x3 Basis; float2 Alpha; float3 V; FBxDFEnergyTermsRGB Spec; float3 DiffuseWeight; float LobeProb; }; FDefaultLitData CreateDefaultLitData(FPathTracingPayload Payload, float3 V_World) { FDefaultLitData Data = (FDefaultLitData)0; Data.Basis = GetGGXBasis(Payload.Roughness, Payload.Anisotropy, Payload.WorldNormal, Payload.WorldTangent, Data.Alpha); Data.V = mul(Data.Basis, V_World); const float NoV = saturate(Data.V.z); Data.Spec = ComputeGGXSpecEnergyTermsRGB(Payload.Roughness, NoV, Payload.SpecularColor); Data.DiffuseWeight = Payload.DiffuseColor * (1 - Data.Spec.E); // Probability of picking diffuse lobe vs. specular lobe Data.LobeProb = LobeSelectionProb(Data.DiffuseWeight, Data.Spec.E); return Data; } FMaterialEval DefaultLit_EvalMaterial( float3 V_World, float3 L_World, FPathTracingPayload Payload, float2 DiffuseSpecularScale ) { const FDefaultLitData Data = CreateDefaultLitData(Payload, V_World); // move vectors into right shading frame const float3 V = Data.V; const float3 L = mul(Data.Basis, L_World); const float3 H = normalize(V + L); const float NoV = saturate(V.z); const float NoL = saturate(L.z); const float VoH = saturate(dot(V, H)); const float NoH = saturate(H.z); FMaterialEval Result = NullMaterialEval(); // Diffuse Lobe const float3 Diffuse = GetPathTracingDiffuseModel(Data.DiffuseWeight, Payload.Roughness, NoV, NoL, VoH, NoH); Result.AddLobeWithMIS(DiffuseSpecularScale.x * Diffuse * ShadowTerminatorTerm(L_World, Payload.WorldNormal, Payload.WorldSmoothNormal), NoL / PI, Data.LobeProb); // Specular lobe const float2 GGXResult = GGXEvalReflection(L, V, H, Data.Alpha); const float3 F = F_Schlick(Payload.SpecularColor, VoH); const float3 SpecWeight = F * GGXResult.x * Data.Spec.W; const float SpecPdf = GGXResult.y; Result.AddLobeWithMIS(DiffuseSpecularScale.y * SpecWeight, SpecPdf, 1.0 - Data.LobeProb); Result.Weight *= Payload.BSDFOpacity; return Result; } FMaterialSample DefaultLit_SampleMaterial( float3 V_World, FPathTracingPayload Payload, float3 RandSample ) { const FDefaultLitData Data = CreateDefaultLitData(Payload, V_World); const float3 V = Data.V; float3 L = 0, H = 0; // Randomly choose to sample diffuse or specular const bool bSampledDiffuse = RandSample.x < Data.LobeProb; if (bSampledDiffuse) { RandSample.x = RescaleRandomNumber(RandSample.x, 0.0, Data.LobeProb); // Lambert // TODO: evaluate CosineSampleHemisphereConcentric L = CosineSampleHemisphere(RandSample.xy).xyz; H = normalize(L + V); } else { RandSample.x = RescaleRandomNumber(RandSample.x, Data.LobeProb, 1.0); H = ImportanceSampleVisibleGGX(RandSample.xy, Data.Alpha, Data.V).xyz; L = reflect(-V, H); if (L.z <= 0) { // invalid output direction, exit early return NullMaterialSample(); } } // transform to world space const float3 L_World = normalize(mul(L, Data.Basis)); const float NoV = saturate(V.z); const float NoL = saturate(L.z); const float VoH = saturate(dot(V, H)); const float NoH = saturate(H.z); const float2 GGXResult = GGXEvalReflection(L, V, H, Data.Alpha); const float SpecPdf = GGXResult.y; const float DiffPdf = NoL / PI; FMaterialSample Result = CreateMaterialSample(L_World, 0.0, 0.0, 1.0, 1.0, PATHTRACER_SCATTER_DIFFUSE); if (bSampledDiffuse) { const float3 Diffuse = GetPathTracingDiffuseModel(Data.DiffuseWeight, Payload.Roughness, NoV, NoL, VoH, NoH); Result.AddLobeWithMIS(Diffuse * ShadowTerminatorTerm(L_World, Payload.WorldNormal, Payload.WorldSmoothNormal), DiffPdf, Data.LobeProb); Result.Pdf += (1.0 - Data.LobeProb) * SpecPdf; } else { const float3 F = F_Schlick(Payload.SpecularColor, VoH); const float3 SpecWeight = F * GGXResult.x * Data.Spec.W; Result.AddLobeWithMIS(SpecWeight, SpecPdf, 1.0 - Data.LobeProb); Result.Pdf += Data.LobeProb * DiffPdf; Result.Roughness = Payload.Roughness; Result.ScatterType = PATHTRACER_SCATTER_SPECULAR; } Result.Weight *= Payload.BSDFOpacity; return Result; }