235 lines
7.9 KiB
Markdown
235 lines
7.9 KiB
Markdown
# Gaussian Haircut:使用股线对齐 3D 高斯模型进行人体头发重建
|
||
|
||
[**中文**](README.md) | [**English**](README_EN.md)
|
||
|
||
本仓库包含了 Gaussian Haircut 的官方实现,这是一种基于股线的人体头发重建方法,用于单目视频。
|
||
|
||
[**论文**](https://arxiv.org/abs/2409.14778) | [**项目页面**](https://eth-ait.github.io/GaussianHaircut/)
|
||
|
||
## 概述
|
||
|
||
重建过程包括以下主要阶段:
|
||
|
||
1. **预处理阶段**
|
||
- 视频帧提取和整理
|
||
- COLMAP相机重建
|
||
- 头发和身体分割
|
||
- 图像质量评估和筛选
|
||
- 方向图计算
|
||
- 人脸关键点检测
|
||
- FLAME头部模型拟合
|
||
|
||
2. **重建阶段**
|
||
- 3D高斯体重建
|
||
- FLAME网格拟合
|
||
- 场景裁剪和优化
|
||
- 头发股线重建
|
||
|
||
3. **可视化阶段**
|
||
- 导出重建的股线
|
||
- Blender渲染可视化
|
||
- 生成结果视频
|
||
|
||
预期输出:
|
||
```
|
||
[your_scene_folder]/
|
||
├── raw.mp4 # 输入视频
|
||
├── 3d_gaussian_splatting/ # 3D高斯体重建结果
|
||
├── flame_fitting/ # FLAME头部模型拟合结果
|
||
├── strands_reconstruction/ # 头发股线重建中间结果
|
||
├── curves_reconstruction/ # 最终头发股线结果
|
||
└── visualization/ # 渲染结果和视频
|
||
```
|
||
资源目录:
|
||
```
|
||
resource/
|
||
├── hyperIQA/ # HyperIQA model
|
||
│ └── pretrained/
|
||
│ └── koniq_pretrained.pkl
|
||
├── Matte-Anything/ # Matte-Anything models
|
||
│ └── pretrained/
|
||
│ ├── groundingdino_swint_ogc.pth
|
||
│ ├── sam_vit_h_4b8939.pth
|
||
│ └── ViTMatte_B_DIS.pth
|
||
├── NeuralHaircut/ # NeuralHaircut models
|
||
│ ├── PIXIE/
|
||
│ └── pretrained_models/
|
||
│ ├── diffusion_prior/
|
||
│ │ ├── dif_ckpt.pth
|
||
│ │ └── wo_bug_blender_uv_00130000.pth
|
||
│ └── strand_prior/
|
||
│ └── strand_ckpt.pth
|
||
├── openpose/ # OpenPose models
|
||
│ ├── models/
|
||
│ │ ├── cameraParameters/
|
||
│ │ ├── face/
|
||
│ │ ├── hand/
|
||
│ │ ├── pose/
|
||
│ │ ├── getModels.bat
|
||
│ │ ├── getModels.sh
|
||
│ │ └── wget-log
|
||
│ └── models.tar.gz
|
||
├── PIXIE/ # PIXIE utilities and models
|
||
│ └── data/
|
||
│ ├── pixie_model.tar
|
||
│ ├── SMPLX_NEUTRAL_2020.npz
|
||
│ └── utilities.zip
|
||
```
|
||
## 环境变量
|
||
|
||
需要设置的环境变量:
|
||
|
||
```batch
|
||
@CALL SET PROJECT_DIR=%~dp0
|
||
@CALL SET MICROMAMBA_EXE=%PROJECT_DIR%\micromamba.exe
|
||
@CALL SET CUDA_HOME="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\"
|
||
@CALL SET BLENDER_DIR="C:\Program Files\Blender Foundation\Blender 3.6\"
|
||
@CALL SET VS_DIR="C:\Program Files\Microsoft Visual Studio\2022\Professional\"
|
||
@CALL SET VS_VCVARS="%VS_DIR%\VC\Auxiliary\Build\vcvars64.bat"
|
||
```
|
||
|
||
## 环境配置
|
||
|
||
### Linux 平台
|
||
|
||
1. **安装 CUDA 11.8**
|
||
|
||
按照 https://developer.nvidia.com/cuda-11-8-0-download-archive 上的说明进行操作。
|
||
|
||
确保:
|
||
- PATH 包含 <CUDA_DIR>/bin
|
||
- LD_LIBRARY_PATH 包含 <CUDA_DIR>/lib64
|
||
|
||
该环境仅在此 CUDA 版本下进行了测试。
|
||
|
||
2. **安装 Blender 3.6** 以创建股线可视化
|
||
|
||
按照 https://www.blender.org/download/lts/3-6 上的说明进行操作。
|
||
|
||
3. **克隆仓库并运行安装脚本**
|
||
|
||
```bash
|
||
git clone git@github.com:eth-ait/GaussianHaircut.git
|
||
cd GaussianHaircut
|
||
chmod +x ./install.sh
|
||
./install.sh
|
||
```
|
||
|
||
### Windows 平台
|
||
|
||
1. **安装 CUDA 11.8**
|
||
- 从 https://developer.nvidia.com/cuda-11-8-0-download-archive 下载并安装
|
||
- 默认安装路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
|
||
- 确保CUDA版本与系统兼容
|
||
|
||
2. **安装 Blender 3.6**
|
||
- 从 https://www.blender.org/download/lts/3-6 下载并安装
|
||
- 默认安装路径:C:\Program Files\Blender Foundation\Blender 3.6
|
||
|
||
3. **安装 Visual Studio 2019 Build Tools**
|
||
- 从 https://visualstudio.microsoft.com/vs/older-downloads/ 下载并安装
|
||
- 选择"C++构建工具"工作负载
|
||
- 默认安装路径:C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools
|
||
|
||
4. **安装 COLMAP**
|
||
- 从 https://github.com/colmap/colmap/releases 下载并安装
|
||
- 下载CUDA版本的COLMAP (例如:COLMAP-3.8-windows-cuda.zip)
|
||
- 解压到不含空格的路径 (例如:C:\COLMAP)
|
||
- 将COLMAP目录添加到系统PATH:
|
||
1. 打开"系统属性" > "环境变量"
|
||
2. 在"系统变量"中找到"Path"
|
||
3. 点击"编辑" > "新建"
|
||
4. 添加COLMAP目录路径
|
||
5. 点击"确定"保存
|
||
- 重启终端使PATH生效
|
||
|
||
5. **安装 7-Zip**
|
||
- 从 https://7-zip.org/ 下载并安装
|
||
- 将7-Zip安装目录添加到系统PATH:
|
||
1. 打开"系统属性" > "环境变量"
|
||
2. 在"系统变量"中找到"Path"
|
||
3. 点击"编辑" > "新建"
|
||
4. 添加7-Zip安装目录(默认为C:\Program Files\7-Zip)
|
||
5. 点击"确定"保存
|
||
- 重启终端使PATH生效
|
||
|
||
6. **下载预训练模型和资源**
|
||
```cmd
|
||
git clone https://gitea.cgnico.com/CGNICO/GaussianHaircut
|
||
cd GaussianHairCut
|
||
# 在PowerShell中运行:
|
||
# 脚本会自动安装gdown并下载所需资源
|
||
.\download_resource.bat
|
||
```
|
||
注意:
|
||
- 下载过程可能需要几分钟到几十分钟,取决于网络速度
|
||
- 如果下载失败,可以重新运行脚本
|
||
- 确保有稳定的网络连接
|
||
|
||
## 使用说明
|
||
|
||
1. **录制单目视频**
|
||
- 参考项目页面上的示例视频
|
||
- 录制要求:
|
||
* 拍摄对象应缓慢转动头部,确保捕捉到所有角度
|
||
* 保持头发和面部清晰可见
|
||
* 避免快速移动导致的运动模糊
|
||
* 保持光照条件稳定
|
||
* 建议视频长度:10-20秒
|
||
* 建议分辨率:1920x1080或更高
|
||
注意:
|
||
- DATA_PATH 应指向包含 raw.mp4 的目录
|
||
- 目录路径不应包含空格或特殊字符
|
||
- 确保有足够的磁盘空间(建议至少20GB)
|
||
|
||
2. **设置重建场景目录**
|
||
- 新建一个文件夹,例如:C:\path\to\scene\folder
|
||
- 将 raw.mp4 放入该文件夹
|
||
|
||
3. **运行安装和重建脚本**
|
||
- 在 install.bat 和 run.bat 中设置环境变量 PROJECT_DIR 和 DATA_PATH
|
||
- 例如:
|
||
```cmd
|
||
set "PROJECT_DIR=C:\path\to\project"
|
||
set "DATA_PATH=C:\path\to\scene\folder"
|
||
```
|
||
- 在 install.bat 和 run.bat 中修改环境变量 CUDA_HOME,BLENDER_DIR,VS_DIR
|
||
```cmd
|
||
set "CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8"
|
||
set "BLENDER_DIR=C:\Program Files\Blender Foundation\Blender 3.6"
|
||
set "VS_DIR=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools"
|
||
```
|
||
- 运行安装脚本
|
||
```cmd
|
||
.\install.bat
|
||
```
|
||
- 运行重建脚本
|
||
```cmd
|
||
.\run.bat
|
||
```
|
||
|
||
## 许可证
|
||
|
||
此代码基于 3D Gaussian Splatting 项目。有关条款和条件,请参阅 LICENSE_3DGS。其余代码根据 CC BY-NC-SA 4.0 分发。
|
||
|
||
## 引用
|
||
|
||
如果此代码对您的项目有帮助,请引用以下论文:
|
||
|
||
```bibtex
|
||
@inproceedings{zakharov2024gh,
|
||
title = {Human Hair Reconstruction with Strand-Aligned 3D Gaussians},
|
||
author = {Zakharov, Egor and Sklyarova, Vanessa and Black, Michael J and Nam, Giljoo and Thies, Justus and Hilliges, Otmar},
|
||
booktitle = {European Conference of Computer Vision (ECCV)},
|
||
year = {2024}
|
||
}
|
||
```
|
||
|
||
## 相关项目
|
||
|
||
- [3D Gaussian Splatting](https://github.com/graphdeco-inria/gaussian-splatting)
|
||
- [Neural Haircut](https://github.com/SamsungLabs/NeuralHaircut): FLAME 拟合管线、股线先验和发型扩散先验
|
||
- [HAAR](https://github.com/Vanessik/HAAR): 头发上采样
|
||
- [Matte-Anything](https://github.com/hustvl/Matte-Anything): 头发和身体分割
|
||
- [PIXIE](https://github.com/yfeng95/PIXIE): FLAME 拟合的初始化
|
||
- [Face-Alignment](https://github.com/1adrianb/face-alignment), [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose): 用于 FLAME 拟合的关键点检测 |