GaussianHaircut/README.md

228 lines
8.3 KiB
Markdown
Raw Normal View History

2025-02-15 16:49:10 +08:00
# Gaussian Haircut: Human Hair Reconstruction with Strand-Aligned 3D Gaussians
2025-02-14 00:44:47 +08:00
2025-02-15 16:49:10 +08:00
[**中文**](README_CN.md) | [**English**](README.md)
2025-02-14 00:44:47 +08:00
2025-02-15 16:49:10 +08:00
This repository contains the official implementation of Gaussian Haircut, a strand-based human hair reconstruction method from monocular video.
2025-02-14 00:44:47 +08:00
2025-02-15 16:49:10 +08:00
[**Paper**](https://arxiv.org/abs/2409.14778) | [**Project Page**](https://eth-ait.github.io/GaussianHaircut/)
2025-02-14 03:35:06 +08:00
2025-02-15 16:49:10 +08:00
## Overview
2025-02-14 03:35:06 +08:00
2025-02-15 16:49:10 +08:00
The reconstruction process includes the following main stages:
2025-02-14 03:35:06 +08:00
2025-02-15 16:49:10 +08:00
1. **Preprocessing Stage**
- Video frame extraction and organization
- COLMAP camera reconstruction
- Hair and body segmentation
- Image quality assessment and filtering
- Orientation map calculation
- Facial keypoint detection
- FLAME head model fitting
2025-02-14 03:35:06 +08:00
2025-02-15 16:49:10 +08:00
2. **Reconstruction Stage**
- 3D Gaussian reconstruction
- FLAME mesh fitting
- Scene cropping and optimization
- Hair strand reconstruction
2025-02-14 03:35:06 +08:00
2025-02-15 16:49:10 +08:00
3. **Visualization Stage**
- Export reconstructed strands
- Blender rendering visualization
- Generate result video
Expected output:
2025-02-14 03:35:06 +08:00
```
[your_scene_folder]/
2025-02-15 16:49:10 +08:00
├── raw.mp4 # Input video
├── 3d_gaussian_splatting/ # 3D Gaussian reconstruction results
├── flame_fitting/ # FLAME head model fitting results
├── strands_reconstruction/ # Hair strand reconstruction intermediate results
├── curves_reconstruction/ # Final hair strand results
└── visualization/ # Rendering results and video
2025-02-14 03:35:06 +08:00
```
2025-02-18 01:03:04 +08:00
## Directory Structure
2025-02-15 21:12:05 +08:00
```
2025-02-18 01:03:04 +08:00
├── cache/ # Cache directory
│ ├── gdown/ # gdown cache
│ ├── torch/ # PyTorch cache
│ └── huggingface/ # Hugging Face cache
├── ext/ # External dependencies
│ ├── NeuralHaircut/ # NeuralHaircut repository
│ ├── Matte-Anything/ # Matte-Anything repository
│ ├── openpose/ # OpenPose repository
│ ├── pytorch3d/ # PyTorch3D repository
│ ├── simple-knn/ # Simple KNN repository
│ ├── kaolin/ # Kaolin repository
│ └── hyperIQA/ # HyperIQA repository
├── resource/ # Resource files
│ ├── NeuralHaircut/ # NeuralHaircut models
│ ├── Matte-Anything/ # Matte-Anything models
│ ├── openpose/ # OpenPose models
│ ├── PIXIE/ # PIXIE models
│ └── hyperIQA/ # HyperIQA models
├── src/ # Source code
├── micromamba/ # Micromamba installation
├── micromamba.exe # Micromamba executable
├── install.bat # Installation script
├── download_resource.bat # Resource download script
└── run.bat # Execution script
```
## Environment Variables
Required environment variables:
```batch
set "PROJECT_DIR=C:\path\to\project" # Project root directory
set "CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8"
set "BLENDER_DIR=C:\Program Files\Blender Foundation\Blender 3.6"
set "VS_DIR=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools"
2025-02-15 21:12:05 +08:00
```
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
## Getting Started
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
### Linux Platform
1. **Install CUDA 11.8**
2025-02-14 00:44:47 +08:00
2025-02-17 08:31:59 +08:00
Follow instructions at https://developer.nvidia.com/cuda-11-8-0-download-archive
2025-02-14 00:44:47 +08:00
2025-02-17 08:31:59 +08:00
Make sure:
- PATH includes <CUDA_DIR>/bin
- LD_LIBRARY_PATH includes <CUDA_DIR>/lib64
2025-02-14 00:44:47 +08:00
2025-02-17 08:31:59 +08:00
The environment was tested only with this CUDA version.
2025-02-14 00:44:47 +08:00
2025-02-17 08:31:59 +08:00
2. **Install Blender 3.6** for strand visualization
2025-02-14 00:44:47 +08:00
2025-02-17 08:31:59 +08:00
Follow instructions at https://www.blender.org/download/lts/3-6
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
3. **Clone repository and run installation script**
2025-02-14 00:44:47 +08:00
```bash
git clone git@github.com:eth-ait/GaussianHaircut.git
cd GaussianHaircut
chmod +x ./install.sh
./install.sh
```
2025-02-15 21:12:05 +08:00
### Windows Platform
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
1. **Install CUDA 11.8**
2025-02-17 08:31:59 +08:00
- Download and install from https://developer.nvidia.com/cuda-11-8-0-download-archive
- Default installation path: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
- Ensure CUDA version is compatible with your system
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
2. **Install Blender 3.6**
2025-02-17 08:31:59 +08:00
- Download and install from https://www.blender.org/download/lts/3-6
- Default installation path: C:\Program Files\Blender Foundation\Blender 3.6
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
3. **Install Visual Studio 2019 Build Tools**
2025-02-17 08:31:59 +08:00
- Download and install from https://visualstudio.microsoft.com/vs/older-downloads/
- Select "C++ Build Tools" workload
- Default installation path: C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
4. **Install COLMAP**
2025-02-17 08:31:59 +08:00
- Download from https://github.com/colmap/colmap/releases
- Download CUDA version of COLMAP (e.g., COLMAP-3.8-windows-cuda.zip)
- Extract to a path without spaces (e.g., C:\COLMAP)
- Add COLMAP directory to system PATH:
1. Open "System Properties" > "Environment Variables"
2. Under "System Variables", find "Path"
3. Click "Edit" > "New"
4. Add COLMAP directory path
5. Click "OK" to save
- Restart terminal for PATH changes to take effect
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
5. **Install 7-Zip**
2025-02-17 08:31:59 +08:00
- Download and install from https://7-zip.org/
- Add 7-Zip installation directory to system PATH:
1. Open "System Properties" > "Environment Variables"
2. Under "System Variables", find "Path"
3. Click "Edit" > "New"
4. Add 7-Zip installation directory (default: C:\Program Files\7-Zip)
5. Click "OK" to save
- Restart terminal for PATH changes to take effect
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
6. **Download pre-trained models and resources**
2025-02-15 14:31:02 +08:00
```cmd
2025-02-15 16:21:25 +08:00
git clone https://github.com/Jeffreytsai1004/GaussianHairCut
cd GaussianHairCut
2025-02-17 08:31:59 +08:00
# Run in PowerShell:
# The script will automatically install gdown and download required resources
2025-02-15 14:31:02 +08:00
.\download_resource.bat
```
2025-02-17 08:31:59 +08:00
Note:
- Download time varies from minutes to tens of minutes depending on network speed
- If download fails, you can rerun the script
- Ensure stable network connection
2025-02-14 01:50:52 +08:00
2025-02-17 08:31:59 +08:00
7. **Clone repository and run installation script**
2025-02-14 01:50:52 +08:00
```cmd
2025-02-15 14:37:19 +08:00
git clone https://github.com/Jeffreytsai1004/GaussianHairCut
cd GaussianHairCut
2025-02-17 08:31:59 +08:00
# First download required resources
2025-02-15 14:37:19 +08:00
.\download_resource.bat
2025-02-17 08:31:59 +08:00
# Run installation script
2025-02-14 02:42:40 +08:00
.\install.bat
2025-02-17 08:31:59 +08:00
# Run reconstruction script
2025-02-15 14:37:19 +08:00
.\run.bat
2025-02-14 01:50:52 +08:00
```
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
## Usage
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
1. **Record Monocular Video**
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
- Reference example videos on the project page
- Recording requirements:
* Subject should rotate head slowly to capture all angles
* Keep hair and face clearly visible
* Avoid motion blur from fast movements
* Maintain stable lighting conditions
* Recommended length: 10-20 seconds
* Recommended resolution: 1920x1080 or higher
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
2. **Setup Scene Directory**
2025-02-14 00:44:47 +08:00
2025-02-14 01:50:52 +08:00
```cmd
2025-02-15 21:12:05 +08:00
# In CMD:
2025-02-14 01:50:52 +08:00
set PROJECT_DIR=[path\to\]GaussianHaircut
set DATA_PATH=[path\to\scene\folder]
run.bat
2025-02-14 02:19:55 +08:00
2025-02-15 21:12:05 +08:00
# Or in PowerShell:
$env:PROJECT_DIR="[path\to\]GaussianHaircut"
$env:DATA_PATH="[path\to\scene\folder]"
2025-02-14 02:19:55 +08:00
.\run.bat
2025-02-14 01:50:52 +08:00
```
2025-02-15 21:12:05 +08:00
Note:
- DATA_PATH should point to directory containing raw.mp4
- Directory paths should not contain spaces or special characters
- Ensure sufficient disk space (at least 20GB recommended)
2025-02-14 01:50:52 +08:00
2025-02-15 21:12:05 +08:00
## License
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
This code is based on the 3D Gaussian Splatting project. See LICENSE_3DGS for terms and conditions. The rest of the code is distributed under CC BY-NC-SA 4.0.
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
## Citation
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
If you find this code helpful for your research, please cite our paper:
2025-02-14 00:44:47 +08:00
2025-02-15 21:12:05 +08:00
```bibtex
2025-02-14 00:44:47 +08:00
@inproceedings{zakharov2024gh,
title = {Human Hair Reconstruction with Strand-Aligned 3D Gaussians},
author = {Zakharov, Egor and Sklyarova, Vanessa and Black, Michael J and Nam, Giljoo and Thies, Justus and Hilliges, Otmar},
booktitle = {European Conference of Computer Vision (ECCV)},
year = {2024}
}
```
2025-02-15 21:12:05 +08:00
## Related Projects
2025-02-14 00:44:47 +08:00
- [3D Gaussian Splatting](https://github.com/graphdeco-inria/gaussian-splatting)
2025-02-15 21:12:05 +08:00
- [Neural Haircut](https://github.com/SamsungLabs/NeuralHaircut): FLAME fitting pipeline, strand prior and hairstyle diffusion prior
- [HAAR](https://github.com/Vanessik/HAAR): Hair upsampling
- [Matte-Anything](https://github.com/hustvl/Matte-Anything): Hair and body segmentation
- [PIXIE](https://github.com/yfeng95/PIXIE): FLAME fitting initialization
- [Face-Alignment](https://github.com/1adrianb/face-alignment), [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose): Keypoint detection for FLAME fitting