GaussianHaircut/README_EN.md

239 lines
8.5 KiB
Markdown
Raw Normal View History

2025-02-19 01:56:32 +08:00
# Gaussian Haircut: Human Hair Reconstruction with Strand-Aligned 3D Gaussians
[**中文**](README.md) | [**English**](README_EN.md)
This repository contains the official implementation of Gaussian Haircut, a strand-based human hair reconstruction method from monocular video.
[**Paper**](https://arxiv.org/abs/2409.14778) | [**Project Page**](https://eth-ait.github.io/GaussianHaircut/)
## Overview
The reconstruction process includes the following main stages:
1. **Preprocessing Stage**
- Video frame extraction and organization
- COLMAP camera reconstruction
- Hair and body segmentation
- Image quality assessment and filtering
- Orientation map calculation
- Facial keypoint detection
- FLAME head model fitting
2. **Reconstruction Stage**
- 3D Gaussian reconstruction
- FLAME mesh fitting
- Scene cropping and optimization
- Hair strand reconstruction
3. **Visualization Stage**
- Export reconstructed strands
- Blender rendering visualization
- Generate result video
Expected output:
```
[your_scene_folder]/
├── raw.mp4 # Input video
├── 3d_gaussian_splatting/ # 3D Gaussian reconstruction results
├── flame_fitting/ # FLAME head model fitting results
├── strands_reconstruction/ # Hair strand reconstruction intermediate results
├── curves_reconstruction/ # Final hair strand results
└── visualization/ # Rendering results and video
```
2025-02-19 02:09:23 +08:00
Resource directory:
```
resource/
2025-02-20 03:10:23 +08:00
├── hyperIQA/ # HyperIQA model
│ └── pretrained/
│ └── koniq_pretrained.pkl
├── Matte-Anything/ # Matte-Anything models
│ └── pretrained/
│ ├── groundingdino_swint_ogc.pth
│ ├── sam_vit_h_4b8939.pth
│ └── ViTMatte_B_DIS.pth
├── NeuralHaircut/ # NeuralHaircut models
│ ├── PIXIE/
│ │ └── pixie_data.tar.gz
│ └── pretrained_models/
│ ├── diffusion_prior/
│ │ ├── dif_ckpt.pth
│ │ └── wo_bug_blender_uv_00130000.pth
│ └── strand_prior/
│ └── strand_ckpt.pth
├── openpose/ # OpenPose models
│ ├── models/
│ │ ├── cameraParameters/
│ │ ├── face/
│ │ ├── hand/
│ │ ├── pose/
│ │ ├── getModels.bat
│ │ ├── getModels.sh
│ │ └── wget-log
│ └── models.tar.gz
├── PIXIE/ # PIXIE utilities and models
│ └── data/
│ ├── pixie_model.tar
2025-02-22 02:51:05 +08:00
│ ├── SMPLX_NEUTRAL_2020.npz
2025-02-20 03:10:23 +08:00
│ └── utilities.zip
2025-02-19 02:12:15 +08:00
```
2025-02-19 01:56:32 +08:00
## Environment Variables
2025-02-19 02:12:15 +08:00
2025-02-19 01:56:32 +08:00
Required environment variables:
2025-02-19 02:12:15 +08:00
2025-02-19 01:56:32 +08:00
```batch
2025-02-19 02:07:19 +08:00
@CALL SET PROJECT_DIR=%~dp0
@CALL SET MICROMAMBA_EXE=%PROJECT_DIR%\micromamba.exe
@CALL SET CUDA_HOME="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\"
@CALL SET BLENDER_DIR="C:\Program Files\Blender Foundation\Blender 3.6\"
@CALL SET VS_DIR="C:\Program Files\Microsoft Visual Studio\2022\Professional\"
@CALL SET VS_VCVARS="%VS_DIR%\VC\Auxiliary\Build\vcvars64.bat"
2025-02-19 01:56:32 +08:00
```
## Getting Started
### Linux Platform
1. **Install CUDA 11.8**
Follow instructions at https://developer.nvidia.com/cuda-11-8-0-download-archive
Make sure:
- PATH includes <CUDA_DIR>/bin
- LD_LIBRARY_PATH includes <CUDA_DIR>/lib64
The environment was tested only with this CUDA version.
2. **Install Blender 3.6** for strand visualization
Follow instructions at https://www.blender.org/download/lts/3-6
3. **Clone repository and run installation script**
```bash
git clone git@github.com:eth-ait/GaussianHaircut.git
cd GaussianHaircut
chmod +x ./install.sh
./install.sh
```
### Windows Platform
1. **Install CUDA 11.8**
- Download and install from https://developer.nvidia.com/cuda-11-8-0-download-archive
- Default installation path: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
- Ensure CUDA version is compatible with your system
2. **Install Blender 3.6**
- Download and install from https://www.blender.org/download/lts/3-6
- Default installation path: C:\Program Files\Blender Foundation\Blender 3.6
3. **Install Visual Studio 2019 Build Tools**
- Download and install from https://visualstudio.microsoft.com/vs/older-downloads/
- Select "C++ Build Tools" workload
- Default installation path: C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools
4. **Install COLMAP**
- Download from https://github.com/colmap/colmap/releases
- Download CUDA version of COLMAP (e.g., COLMAP-3.8-windows-cuda.zip)
- Extract to a path without spaces (e.g., C:\COLMAP)
- Add COLMAP directory to system PATH:
1. Open "System Properties" > "Environment Variables"
2. Under "System Variables", find "Path"
3. Click "Edit" > "New"
4. Add COLMAP directory path
5. Click "OK" to save
- Restart terminal for PATH changes to take effect
5. **Install 7-Zip**
- Download and install from https://7-zip.org/
- Add 7-Zip installation directory to system PATH:
1. Open "System Properties" > "Environment Variables"
2. Under "System Variables", find "Path"
3. Click "Edit" > "New"
4. Add 7-Zip installation directory (default: C:\Program Files\7-Zip)
5. Click "OK" to save
- Restart terminal for PATH changes to take effect
6. **Download pre-trained models and resources**
```cmd
2025-02-22 02:07:32 +08:00
git clone https://gitea.cgnico.com/CGNICO/GaussianHaircut
2025-02-19 01:56:32 +08:00
cd GaussianHairCut
# Run in PowerShell:
# The script will automatically install gdown and download required resources
.\download_resource.bat
```
Note:
- Download time varies from minutes to tens of minutes depending on network speed
- If download fails, you can rerun the script
- Ensure stable network connection
## Usage
1. **Record Monocular Video**
- Reference example videos on the project page
- Recording requirements:
* Subject should rotate head slowly to capture all angles
* Keep hair and face clearly visible
* Avoid motion blur from fast movements
* Maintain stable lighting conditions
* Recommended length: 10-20 seconds
* Recommended resolution: 1920x1080 or higher
Note:
- DATA_PATH should point to directory containing raw.mp4
- Directory paths should not contain spaces or special characters
- Ensure sufficient disk space (at least 20GB recommended)
2. **Setup Scene Directory**
- Create a new folder, e.g., C:\path\to\scene\folder
- Place raw.mp4 in this folder
3. **Run Installation and Reconstruction Scripts**
- Set environment variables PROJECT_DIR and DATA_PATH in install.bat and run.bat
- For example:
```cmd
set "PROJECT_DIR=C:\path\to\project"
set "DATA_PATH=C:\path\to\scene\folder"
```
- Modify environment variables CUDA_HOME, BLENDER_DIR, VS_DIR in install.bat and run.bat
```cmd
set "CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8"
set "BLENDER_DIR=C:\Program Files\Blender Foundation\Blender 3.6"
set "VS_DIR=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools"
```
- Run installation script
```cmd
.\install.bat
```
- Run reconstruction script
```cmd
.\run.bat
```
## License
This code is based on the 3D Gaussian Splatting project. See LICENSE_3DGS for terms and conditions. The rest of the code is distributed under CC BY-NC-SA 4.0.
## Citation
If you find this code helpful for your research, please cite our paper:
```bibtex
@inproceedings{zakharov2024gh,
title = {Human Hair Reconstruction with Strand-Aligned 3D Gaussians},
author = {Zakharov, Egor and Sklyarova, Vanessa and Black, Michael J and Nam, Giljoo and Thies, Justus and Hilliges, Otmar},
booktitle = {European Conference of Computer Vision (ECCV)},
year = {2024}
}
```
## Related Projects
- [3D Gaussian Splatting](https://github.com/graphdeco-inria/gaussian-splatting)
- [Neural Haircut](https://github.com/SamsungLabs/NeuralHaircut): FLAME fitting pipeline, strand prior and hairstyle diffusion prior
- [HAAR](https://github.com/Vanessik/HAAR): Hair upsampling
- [Matte-Anything](https://github.com/hustvl/Matte-Anything): Hair and body segmentation
- [PIXIE](https://github.com/yfeng95/PIXIE): FLAME fitting initialization
- [Face-Alignment](https://github.com/1adrianb/face-alignment), [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose): Keypoint detection for FLAME fitting